
Virtex-6 FPGA
Memory Interface
Solutions
User Guide

UG406 October 19, 2011

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com UG406 October 19, 2011

Notice of Disclaimer
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the maximum
extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL
WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising
under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or
consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action
brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same.
Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are
subject to the terms and conditions of the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be
subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-
safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical
Applications: http://www.xilinx.com/warranty.htm#critapps.

© Copyright 2009–2011 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zynq, and other designated brands included
herein are trademarks of Xilinx in the United States and other countries. AMBA is a registered trademark of ARM in the EU and other
countries. All other trademarks are the property of their respective owners.

Revision History
The following table shows the revision history for this document.

Date Version Revision

06/24/09 1.0 Initial Xilinx release.

09/16/09 1.1 MIG 3.2 release.

Chapter 1:

• Updated screen captures, controller options descriptions, and tables in Getting
Started with the CORE Generator Software, page 13.

• Updated Table 1-83, page 114 and Table 1-88, page 130.
• Removed Table 1-11 that was identical to Table 1-10, page 45.
• Updated Figure 1-51, page 108.
• Added Debugging Virtex-6 FPGA DDR2/DDR3 SDRAM Designs, page 151.

Chapter 2:

• Updated Figure 2-2, page 177 to Figure 2-11, page 183.
• Added Figure 2-33, page 198.
• Updated Table 2-2, page 200, Table 2-6, page 202, Table 2-10, page 213, Table 2-11,

page 213, Table 2-13, page 222, and Table 2-14, page 225.
• Updated Figure 2-35, page 208 and Figure 2-36, page 209.
• Updated Controller Options, page 185 and Calibration, page 218.

Added Chapter 3, RLDRAM II Memory Interface Solution.

http://www.xilinx.com
http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps

UG406 October 19, 2011 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions

12/02/09 1.2 • Added VHDL (.vhd) file extensions to existing file names with Verilog (.v) file
extensions in various places throughout the document, as appropriate, as follows:
<file name>.v/vhd.

• Globally changed version number of ISE® Design Suite from 11.3 to 11.4.

Chapter 1:

• Added signals app_full and app_wdf_full to Table 1-18, page 70.
• Updated Figure 1-9, page 18, Figure 1-12, page 21, Figure 1-13, page 21, and

Figure 1-50, page 107.
• Added Note for parameter CLK_PERIOD in Table 1-88, page 130.
• Added User Interface, page 116, Command Path, page 117, Write Path, page 120, and

Read Path, page 124.
• Renamed section previously entitled “Interfacing to the Core” to Native Interface,

page 125.
• Updated DDR3 SDRAM, page 137.
• Added Design Rules, page 137, and DDR3 Component PCB Routing, page 137.
• Updated DDR2 SDRAM, page 144.
• Added Design Rules, page 144, and Pin Assignments, page 144.
• Added Supported Devices for Virtex-6 FPGAs, page 172.

Chapter 2:

• Updated Figure 2-10, page 182, Figure 2-13, page 185 and Figure 2-14, page 185.
• Added Note for parameter CLK_PERIOD in Table 2-13, page 222.
• Renamed “Debugging the Core” to DEBUG_PORT Signals, and moved it into

Debugging Virtex-6 FPGA QDRII+ SRAM Designs, page 226.
• Added Debugging Virtex-6 FPGA QDRII+ SRAM Designs, page 226.

Chapter 3:

• Updated Figure 3-9, page 252, Figure 3-12, page 255, Figure 3-13, page 255 and
Figure 2-36, page 209.

• Added Note for parameter CLK_PERIOD in Table 3-15, page 298.
• Renamed “Debugging the Core” to DEBUG_PORT Signals, and moved it into

Debugging Virtex-6 FPGA RLDRAM II Memory Designs, page 304.
• Added Debugging Virtex-6 FPGA RLDRAM II Memory Designs, page 304.

Date Version Revision

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com UG406 October 19, 2011

04/19/10 1.3 Updated Introduction, page 13. Updated ISE Design Suite version from 11.4 to 12.1.
Replaced app_full with app_rdy, and app_wdf_full with app_wdf_rdy in Chapter 1.
Updated Figure 1-9, Figure 1-24, and Figure 1-28. Added Figure 1-27, Figure 1-29 and
Figure 1-30. Removed modules phy_ocb_mon.v/vhd and
phy_ocb_mon_top.v/vhd from Table 1-3. Removed pipeline_inserter.v/vhd
from Table 1-4 and Table 1-14. Replaced app_full with app_rdy, and removed
app_wdf_full from Table 1-18. Updated description for app_rdy in User Interface,
page 70. Updated Figure 1-48, Figure 1-49, Figure 1-50, Figure 1-51, Figure 1-56, and
associated text descriptions. Removed Figure 1-54: OSERDES Clock Monitor Block
Diagram and removed OSERDES Clock Phase Monitor subsection. Added signals SDA
and SCL to Table 1-83. Updated Figure 1-57, Figure 1-60, Figure 1-61, Figure 1-62,
Figure 1-63, Figure 1-65, Figure 1-66, and Figure 1-69. Added Figure 1-64. Updated
Phase Detector, page 113 and Write Path, page 120. Added Read Latency, page 127, and
Core Constraints, page 127. Updated Table 1-88. Updated DDR3 SDRAM Bank Selection
Rules, page 137, and added Configuration, page 141. Updated DDR2 SDRAM Bank
Selection Rules, page 144 and added Configuration, page 147. Updated Table 1-98.

Updated Figure 2-10, Figure 2-21, Figure 2-35, Figure 2-36, Figure 2-39, Figure 2-40, and
Figure 2-41. Added Figure 2-20 and Figure 2-22. Removed
qdr_rld_phy_ocb_mon_top.v/vhd from and updated description of
qdr_rld_phy_ocb_mon.v/vhd in Table 2-2 and Table 2-6. Updated Table 2-9,
Table 2-10, Table 2-13, Table 2-14, Table 2-17, and Table 2-18. Added Table 2-12. Removed
description of two-word burst length protocol, including Figure 2-41, from Interfacing
with the Memory Device, page 214. Updated I/O Architecture, page 216. Updated Data
Capture, page 217. Removed Output Circular Buffer Monitor subsection.

Updated Figure 3-9, Figure 3-26, Figure 3-30, and Figure 3-49. Added Figure 3-29 and
I/O Voltage Option description. Removed qdr_rld_phy_ocb_mon_top.v/vhd from
and updated description of qdr_rld_phy_ocb_mon.v/vhd in Table 3-2 and Table 3-6.
Updated Table 3-9 and Table 3-11. Updated I/O Architecture, page 293 and Figure 3-50.
Updated Data Capture, page 295. Removed Output Circular Buffer Monitor subsection.
Updated Table 3-15, Table 3-19, and Table 3-20.

Added Appendix B, Simulation Help.

07/23/10 1.4 Updated ISE Design Suite version from 12.1 to 12.2. Updated screen captures in
Chapter 1, Chapter 2, and Chapter 3.

Removed subsection “Finish” from Creating Virtex-6 FPGA DDR3 Memory Controller
Block Design. Replaced app_wdf_full with app_wdf_rdy in Figure 1-46. In Table 1-18,
updated description of app_sz and added clk_mem, clk_rd_base, dfi_init_complete, and
app_ecc_multiple_err[3:0]. Added clk_mem, clk_rd_base, and phy_init_done. Added
description of example_top module settings after Figure 1-49. Replaced app_full with
app_rdy in Command Path. In Table 1-88, updated Options column for
PHASE_DETECT and added STARVE_LIMIT. In Table 1-89, updated Options column
for parameter APP_DATA_WIDTH. Added Data/Strobe/Mask Span Allocation Rules.

Removed System Control Selection from Bank Selections, page 190. Updated Write Path,
page 214, including Figure 2-39. Updated Read Path, page 217 and Dynamic Calibration,
page 219. In Table 2-13, updated descriptions of CLK_PERIOD and DATA_WIDTH, and
removed MMCM_ADV_PS_WA. Updated PHY_LATENCY. In Table 2-17, updated If
Problems Arise column for dbg_phy_status[6].

Added Configuration option and Figure 3-20 to Setting RLDRAM II Memory Parameter
Option. Removed System Control Selection from Bank Selections, page 263. Updated
signal directions in Figure 3-43. In Table 3-15, removed MMCM_ADV_PS_WA, and
updated PHASE_DETECT and note 3. In Table 3-19, updated If Problems Arise column
for dbg_phy_status[6].

Date Version Revision

http://www.xilinx.com

UG406 October 19, 2011 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions

09/21/10 1.5 MIG 3.6 release. Updated ISE Design Suite version from 12.2 to 12.3. Updated
Introduction, page 13 for AXI4 slave interface support. Changed title of Getting Started
section to Getting Started with the CORE Generator Software, page 13 and updated
Customizing and Generating the Core, page 13. Updated Creating Virtex-6 FPGA DDR3
Memory Controller Block Design, page 20 and Figure 1-11 for the AXI4 slave interface
option. Added AXI Parameter Options, page 25 and Figure 1-22. Updated Figure 1-29
and Figure 1-30. Updated Directory Structure and File Descriptions, page 39. Added
Verify UCF and Update Design and UCF Rules, page 49, Modifying the Example Design,
page 58, Getting Started with EDK, page 66, AXI4 Slave Interface Block, page 69, and
IDELAYCTRL, page 70. Removed Table 1-14, “Test Data Patterns.” Updated description
of app_rd_data_end in Table 1-18. Added AXI4 Slave Interface Block, page 74. Added
last paragraph (about IDELAYCTRL module) to Clocking Architecture, page 106. Added
paragraph about timing margin adjustment to Read Leveling, page 112. Updated first
paragraph under Interfacing to the Core, page 115 for the AXI4 slave interface option.
Added AXI4 Slave Interface, page 115. Added timing for app_sz in Figure 1-66. Added
BUFR Resynchronization Full-Cycle Path, page 128. Updated Table 1-88 and Table 1-94.
Updated paragraph immediately following Table 1-94.

Added Verify UCF and Update Design and UCF Rules, page 204. Modified description
of qdr_cq_n in Table 2-11. Updated Figure 2-39. Removed fifth sentence under Read
Path, page 217 (about CQ and CQ#). Updated Data Capture, page 217 (removed
sentence about CQ/CQ#). Updated Figure 2-41 (removed CQ# IOB block and connected
CLKB to same input to CLK). Updated Calibration of CQ/CQ# and Q and Data
Realignment, page 219. Updated Dynamic Calibration, page 219. Added IDELAYCTRL,
page 221. Updated values and description for Dynamic Calibration, page 219 in
Table 2-13. Updated first bullet under Trace Length Requirements, page 224. Updated
Pinout Requirements, page 225.

Added Verify UCF and Update Design and UCF Rules, page 277 and IDELAYCTRL,
page 298. Updated Figure 3-49 and Pinout Requirements, page 303.

12/14/10 1.6 MIG 3.61 release. Added EDK parameter names to Table 1-88 and Table 1-89. Added
Noise and DLL Lock, page 144 and Noise and DLL Lock, page 150.

Date Version Revision

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com UG406 October 19, 2011

03/01/11 1.7 MIG 3.7 release. Updated ISE Design Suite version to 13.1.

Chapter 1: Updated Figure 1-23. Added paragraph about address mapping scheme
under Figure 1-23. In Verify UCF and Update Design and UCF Rules, page 49, replaced
bullet about allocation of first memory clock pair with allocation of memory clock
signals (CK and CK#). Added new subsections to Getting Started with EDK, page 66. In
Table 1-18, updated clk_rd_base definition to indicate it is full frequency. Changed name
of dfi_init_complete to phy_init_done throughout. Added OSERDES blocks to
Figure 1-50. Rewrote Read Datapath, page 110. Revised Phase Detector, page 113 and
User Interface, page 116. Added new section AXI Addressing. Added
MEM_ADDR_ORDER (C_MEM_ADDR_ORDER) to Table 1-88. Revised CXT and lower
power device bullets in Design Rules, page 137. In Pin Allocation Rules on page 138
(DDR3) and page 145 (DDR2), changed the memory clock signal allocation bullet and
deleted the bullet about a single VREF pin being reserved. In Trace Lengths, page 143 for
DDR3, added sentences about recommended method for determining delay, replaced
“electrical delay” with “skew”, and added a new bullet on DQ to DQS matching.
Revised CXT bullets to a single bullet for both speed grades in Design Rules, page 144.
Added Table 1-90 and Table 1-91. In Trace Lengths, page 149 for DDR2, replaced
“electrical delay” with “skew”, and added a new bullet on DQ to DQS matching. Added
dbg_inc_rd_fps and dbg_dec_rd_fps to Table 1-98.

Chapter 2: In Trace Length Requirements, page 224 for QDRII+ SRAM, changed the
delay detection to FPGA Editor and replaced “electrical delay” with “skew”.

Chapter 3: In Trace Length Requirements, page 303 for RLDRAM II, changed the delay
detection to FPGA Editor and replaced “electrical delay” with “skew”. Removed
Figure 3-54, MMCM Placement.

06/22/11 1.8 MIG 3.8 release. Updated ISE Design Suite version to 13.2. Updated various GUI screens
throughout Chapter 1, Chapter 2, and Chapter 3.

Chapter 1: Added the user_design/rtl/ecc, Simulating the Example Design (for
Designs with an AXI4 Interface), Simulation Considerations, AXI4-Lite Slave
Control/Status Register Interface Block, and Error Correcting Code (ECC) sections.
Updated Error Correction Code (ECC) description on page 22. Added traffic generator
feature list on page 57. Added ENFORCE_RD_WR, ENFORCE_RD_WR_CMD,
ENFORCE_RD_WR_PATTERN, C_EN_WRAP_TRANS, and C_AXI_NBURST_TEST to
Table 1-15. Added sentence about traffic generator signals after Table 1-17 on page 65.
Added note about data mask option on page 65. Added information about AXI4-Lite
interface to AXI4 Interface Connection, page 67. In Table 1-18, added table notes and
inserted new app_correct_en signal. Added third paragraph to AXI4 Slave Interface
Block, page 74. Under Figure 1-50, replaced text regarding MMCM parameters. Revised
the value of DATA_BUF_ADDR_WIDTH in Table 1-89. Added methods for determining
delay to the first paragraph of Trace Lengths, page 149. Added the Pin Mapping for x4
RDIMMs and Verifying the Simulation Using the Example Design (for Designs with the
AXI4 User Interface) sections.

Chapter 2: Revised the description of clk_wr in Table 2-10. Added methods for
determining delay to the first paragraph of Trace Length Requirements, page 224.

Chapter 3: In Table 3-9, revised the user_afifo_empty description. Added methods for
determining delay to the first paragraph of Trace Length Requirements, page 303.

Date Version Revision

http://www.xilinx.com

UG406 October 19, 2011 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions

10/19/11 1.9 MIG 3.9 release. Updated ISE Design Suite version to 13.3. Updated various GUI screens
throughout Chapter 1, Chapter 2, and Chapter 3. Removed Preface and added
Appendix A, Additional Resources.

• Chapter 1: Removed IODELAY Power Versus Performance bullet from Setting the
DDR3 Memory Parameter Option, page 26. Updated the rule when the frequency is
over 400 MHz in Verify UCF and Update Design and UCF Rules, page 49. Revised
app_sz description in Table 1-18. Added Read Priority with Starve Limit, page 78.
Expanded AXI Addressing, page 115. Added 2:1 mode example after Figure 1-66. In
Table 1-85, removed 1 option from nCK_PER_CLK, removed DISABLED option from
RTT_NOM (C_RTT_NOM) for DDR3, and changed RTT_NOM to RTT_WR in
RTT_WR (C_RTT_WR). Added sentence about when to tie DM to GND on page 143
and page 149.

• Chapter 2: Removed qdr_qvld and Qvld from this chapter. Removed IODELAY
Power Versus Performance bullet from Controller Options, page 185.

• Chapter 3: Removed rld_qvld and QVLD from this chapter. Removed IODELAY
Power Versus Performance bullet from Setting RLDRAM II Memory Parameter
Option, page 258.

Date Version Revision

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com UG406 October 19, 2011

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 9
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution
Introduction . 13
Getting Started with the CORE Generator Software. 13

System Requirements . 13
Customizing and Generating the Core . 13
Creating Virtex-6 FPGA DDR3 Memory Controller Block Design. 20
Directory Structure and File Descriptions . 39
Verify UCF and Update Design and UCF Rules . 49
Quick Start Example Design. 54
Modifying the Example Design . 58

Getting Started with EDK . 66
EDK Clocking . 66
AXI4 Interface Connection . 67
External Ports . 68
AXI Address . 68

Simulation Considerations . 68
Core Architecture . 68

Overview . 68
User Interface . 70
AXI4 Slave Interface Block . 74
AXI4-Lite Slave Control/Status Register Interface Block . 78
User Interface Block . 94
Native Interface . 94
Memory Controller . 98
Error Correcting Code (ECC) . 100
PHY . 104
Physical Interface . 114

Designing with the Core . 115
Interfacing to the Core . 115

AXI4 Slave Interface . 115
AXI Addressing . 115
User Interface . 116
Command Path . 117
Write Path . 120
Read Path . 124
Native Interface . 125
Read Latency. 127

Core Constraints . 127
Timing Constraints . 127
Location and I/O Constraints . 128

Customizing the Core . 130
Design Guidelines . 137

DDR3 SDRAM . 137
DDR2 SDRAM . 144
Pin Mapping for x4 RDIMMs . 150

Table of Contents

http://www.xilinx.com

10 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Debugging Virtex-6 FPGA DDR2/DDR3 SDRAM Designs. 151
Introduction . 151
Debug Tools . 152
Simulation Debug . 153
Synthesis and Implementation Debug . 164
Hardware Debug . 165

Supported Devices for Virtex-6 FPGAs . 172

Chapter 2: QDRII+ SRAM Memory Interface Solution
Introduction . 175
Getting Started. 176

System Requirements . 176
Quick Start Example Design. 176
Customizing and Generating the Core . 177
Creating the Virtex-6 FPGA QDRII+ SRAM Memory Design 184
Directory Structure and File Descriptions . 199

Designing with the Core . 204
Verify UCF and Update Design and UCF Rules . 204

Error Messages . 205
Core Architecture . 208

Overview . 208
Client Interface . 210
Physical Interface . 213
Write Path . 214
Read Path . 217
Calibration. 218
Reset Module . 220

Customizing the Core . 222
Design Guidelines . 224
Debugging Virtex-6 FPGA QDRII+ SRAM Designs . 226

Introduction . 226
Debug Tools . 226
Simulation Debug . 227
Synthesis and Implementation Debug . 233
Hardware Debug . 235
Debugging the Core . 237

Chapter 3: RLDRAM II Memory Interface Solution
Introduction . 247
Getting Started. 247

System Requirements . 247
Customizing and Generating the Core . 248
Creating the Virtex-6 FPGA RLDRAM II Memory Design . 254
Directory Structure and File Descriptions . 270
Verify UCF and Update Design and UCF Rules . 277
Quick Start Example Design. 280

Designing with the Core . 281
Core Architecture . 282

Overview . 282

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 11
UG406 October 19, 2011

Client Interface . 284
Physical Interface . 288
PHY-Only Interface . 289
Read Path . 294
Calibration. 296
Reset Module . 297

Customizing the Core . 298
Design Guidelines . 302

Trace Length Requirements . 303
Pinout Requirements . 303

Debugging Virtex-6 FPGA RLDRAM II Memory Designs. 304
Introduction . 304
Debug Tools . 305
Hardware Debug . 317
Debugging the Core . 319

Appendix A: Additional Resources
Xilinx Resources . 329
Solution Centers . 329
References . 329
List of Acronyms . 330

Appendix B: Simulation Help
Introduction . 333

Supported Features . 334
Unsupported Features . 334

Simulating the Design . 334
Simulations Using ModelSim . 334
Changing Simulation Run Time . 335
Simulations Using ISim . 335

Files in sim Folder . 336
Design Notes . 341
Known Issues . 342

QDRII+ SRAM . 343
RLDRAM II . 343

http://www.xilinx.com

12 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 13
UG406 October 19, 2011

Chapter 1

DDR2 and DDR3 SDRAM
Memory Interface Solution

Introduction
The Virtex®-6 FPGA memory interface solutions core is a combined pre-engineered
controller and physical layer (PHY) for interfacing Virtex-6 FPGA user designs and
AMBA® advanced extensible interface (AXI4) slave interfaces to DDR2 and DDR3
SDRAM devices. This user guide provides information about using, customizing, and
simulating a LogiCORE™ IP DDR2 or DDR3 SDRAM memory interface core for the
Virtex-6 FPGA. In the Embedded Development Kit (EDK) this core is provided through the
Xilinx® Platform Studio (XPS) as the axi_v6_ddrx IP with a static AXI4 to DDR2 or
DDR3 SDRAM architecture. The user guide describes the core architecture and provides
details on customizing and interfacing to the core. While it might be possible to use the
different blocks independently, the supported solution is the combined controller and
physical layer.

Getting Started with the CORE Generator Software
This section is a step-by-step guide for using the CORE Generator™ software to generate a
DDR2 or DDR3 SDRAM memory interface in a Virtex-6 device, run the design through
implementation with the Xilinx tools, and simulate the example design using the provided
synthesizable testbench.

System Requirements
The operating system used was Microsoft Windows XP Professional. ISE® Design Suite,
version 13.3 was used.

Customizing and Generating the Core

Generation through Graphical User Interface

The Memory Interface Generator (MIG) is a self-explanatory wizard tool that can be
invoked under the CORE Generator software from XPS. This section is intended to help in
understanding the various steps involved in using the MIG tool.

These steps should be followed to generate a Virtex-6 FPGA DDR3 SDRAM design:

Note: The exact behavior of the MIG tool and the appearance of some pages/options might differ
depending on whether the MIG tool is invoked from the CORE Generator software or from XPS, and
whether or not an AXI interface is selected. These differences are described in the steps below.

http://www.xilinx.com

14 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

1. To invoke the MIG tool from XPS, select Memory and Memory Controller → AXI V6
Memory Controller from the XPS IP catalog (when adding new IP to the system) or
right-click the axi_v6_ddrx component in the XPS System Assembly View and select
Configure IP.... Then skip to MIG Output Options, page 18.

Otherwise, to launch the MIG tool from the CORE Generator software, select
Start → Xilinx ISE Design Suite 13.3 → ISE → Accessories → CORE
Generator (Figure 1-1).

2. Choose File → New project to open the New Project dialog box. Create a new project
named Virtex6_MIG_Example_Design (Figure 1-2).

X-Ref Target - Figure 1-1

Figure 1-1: Xilinx CORE Generator Software

X-Ref Target - Figure 1-2

Figure 1-2: New CORE Generator Software Project

UG406_c1_01_041311

UG406_c1_02_081109

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 15
UG406 October 19, 2011

Getting Started with the CORE Generator Software

3. Enter a project name and location. Click Save (Figure 1-3).

4. Select these project options for the part (Figure 1-4):

a. Family: Virtex-6

b. Device: xc6vlx240t

c. Package: ff1156

d. Speed Grade: -2

5. Select Verilog or VHDL as the Design Entry Option and ISE for the Vendor Flow
Setting. Click OK to finish the Project Options setup (Figure 1-5).

X-Ref Target - Figure 1-3

Figure 1-3: New Project Menu

X-Ref Target - Figure 1-4

Figure 1-4: CORE Generator Software Device Selection Page

UG406_c1_03_081109

UG406_c1_04_081109

http://www.xilinx.com

16 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

6. Select Memory Interface Generators (MIG) by expanding Memories & Storage
Elements (Figure 1-6).

X-Ref Target - Figure 1-5

Figure 1-5: CORE Generator Software Design Flow Setting Page

X-Ref Target - Figure 1-6

Figure 1-6: Virtex_6_MIG_Example_Design Project Page

UG406_c1_05_081109

UG406_c1_06_041311

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 17
UG406 October 19, 2011

Getting Started with the CORE Generator Software

7. Launch the MIG wizard by selecting Memories & Storage Elements → Memory
Interface Generator MIG. Select the latest MIG version under Memory Interface
Generators (Figure 1-7).

8. The options screen in the CORE Generator software displays the details of the selected
CORE Generator software options that are selected before invoking the MIG tool
(Figure 1-8).

9. Click Next to display the Output Options window.

X-Ref Target - Figure 1-7

Figure 1-7: Starting the MIG Wizard

X-Ref Target - Figure 1-8

Figure 1-8: Virtex-6 FPGA Memory Interface Generator Front Page

UG406_c1_07_041311

UG406_C1_08_081109

http://www.xilinx.com

18 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

MIG Output Options

1. Select the Create Design radio button to create a new memory controller design. Enter
a component name in the Component Name field (Figure 1-9).

MIG outputs are generated with the folder name <component name>.

Note: Only alphanumeric characters can be used for <component name>. Special characters
cannot be used. This name should always start with an alphabetical character and can end with
an alphanumeric character.

When invoked from XPS, only the Create Design and Verify UCF and Update
Design and UCF options are available. The component name is also corrected to be
the IP instance name from XPS. The Multi-Controller option in XPS is not available.
Multiple controllers are implemented as multiple separate instances of axi_v6_ddrx
in XPS.

2. Click Next to display the Pin Compatible FPGAs window.

X-Ref Target - Figure 1-9

Figure 1-9: MIG Output Options

UG406_c1_09_022610

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 19
UG406 October 19, 2011

Getting Started with the CORE Generator Software

Pin Compatible FPGAs

The Pin Compatible FPGAs window lists FPGAs in the selected family having the same
package. If the generated pinout from the MIG tool needs to be compatible with any of
these other FPGAs, this option should be used to select the FPGAs with which the pinout
has to be compatible (Figure 1-10).

1. Select any of the compatible FPGAs in the list. Only the common pins between the
target and selected FPGAs are used by the MIG tool. The name in the text box signifies
the target FPGA selected.

2. Click Next to display the Memory Selection window.

X-Ref Target - Figure 1-10

Figure 1-10: Pin-Compatible Virtex-6 FPGAs

UG406_C1_10_081109

http://www.xilinx.com

20 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

Creating Virtex-6 FPGA DDR3 Memory Controller Block Design

Memory Selection

This page displays all memory types that are supported by the selected FPGA family.

1. Select the DDR3 SDRAM controller type.

2. Click Next to display the Controller Options window (Figure 1-11).

DDR3 and DDR2 SDRAM designs support memory-mapped AXI4 interfaces. The AXI
interface is currently implemented in Verilog only. Users that require the AXI interface
should select the language as “Verilog” in the CORE Generator software before invoking
the MIG tool. If the AXI4 interface is not selected, the user interface (UI) is the primary
interface.

The axi_v6_ddrx IP from the EDK flow only supports DDR2 and DDR3 SDRAM
memories and has the AXI support always turned on.

X-Ref Target - Figure 1-11

Figure 1-11: Memory Type and Controller Selection

UG406_c1_11_073010

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 21
UG406 October 19, 2011

Getting Started with the CORE Generator Software

Controller Options

This page shows the various controller options that can be selected (Figure 1-12).

If the design has multiple controllers, the controller options page is repeated for each of the
controllers. This page is partitioned into a maximum of nine sections. The number of
partitions depends on the type of memory selected. The controller options page also
contains these pull-down menus to modify different features of the design:

• Frequency: This feature indicates the operating frequency for all controllers
(Figure 1-13). The frequency block is limited by factors such as the selected FPGA and
device speed grade. In the EDK flow, an extra check box (selected by default) allows
the user to specify that the frequency information should be calculated automatically
from EDK.

X-Ref Target - Figure 1-12

Figure 1-12: Controller Options Page

UG406_c1_12_041311

X-Ref Target - Figure 1-13

Figure 1-13: Frequency

UG406_c1_13_041311

http://www.xilinx.com

22 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

• Memory Type: This feature selects the type of memory parts used in the design
(Figure 1-14).

• Memory Part: This option selects a memory part for the design. Selections can be
made from the list, or a new part can be created (Figure 1-15).

• Data Width: The data width value can be selected here based on the memory type
selected earlier (Figure 1-16). The list shows all supported data widths for the selected
part. One of the data widths can be selected. These values are generally multiples of
the individual device data widths. In some cases, the width might not be an exact
multiple. For example, 16 bits is the default data width for x16 components, but 8 bits
is also a valid value.

• Error Correction Code (ECC): This feature is supported for 72-bit and 144-bit DIMM
configurations and allows the memory controller to detect and correct single-bit
errors (Figure 1-17). Enabling ECC in AXI mode provides an AXI4-Lite slave interface
to interact with the ECC Status/Control registers. This feature is supported in EDK
flow only.

X-Ref Target - Figure 1-14

Figure 1-14: Memory Type

X-Ref Target - Figure 1-15

Figure 1-15: Selecting Memory Type and Memory Part

X-Ref Target - Figure 1-16

Figure 1-16: Data Width

X-Ref Target - Figure 1-17

Figure 1-17: ECC

UG406_C1_14_081109

UG406_c1_15_052010

UG406_C1_16_051810

UG406_C1_76_081109

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 23
UG406 October 19, 2011

Getting Started with the CORE Generator Software

• Data Mask: This option allocates data mask pins when selected (Figure 1-18). This
option should be deselected to deallocate data mask pins and increase pin efficiency.
This option is disabled for memory parts that do not support data mask.

• Ordering: This feature allows the memory controller to reorder commands to
improve the memory bus efficiency (Figure 1-19).

• Memory Details: The bottom of the Controller Options page (Figure 1-12, page 21)
displays the details for the selected memory configuration (Figure 1-20).

1. Select the appropriate frequency (Figure 1-13). Either use the spin box or enter a valid
value using the keyboard. Values entered are restricted based on the minimum and
maximum frequencies supported.

X-Ref Target - Figure 1-18

Figure 1-18: Data Mask

X-Ref Target - Figure 1-19

Figure 1-19: Ordering

X-Ref Target - Figure 1-20

Figure 1-20: Memory Details

UG406_c1_17_052010

UG406_C1_77_081109

UG406_C1_18_081109

http://www.xilinx.com

24 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

2. Select the appropriate memory part from the list (Figure 1-15). If the required part or
its equivalent is unavailable, a new memory part can be created. To create a custom
part, click the Create Custom Part button below the Memory Part pull-down menu.
A new window appears, as shown in Figure 1-21.

The Create Custom Part window includes all the specifications of the memory
component selected in the Select Base Part pull-down menu.

3. Enter the appropriate memory part name in the text box.

4. Select the suitable base part from the Select Base Part list.

5. Edit the value column as needed.

6. Select the suitable values from the Row, Column, and Bank options as per the
requirements.

7. After editing the required fields, click the Save button. The new part is saved with the
selected name. This new part is added in the Memory Parts list on the Controller
Options page (Figure 1-13, page 21). It is also saved into the database for reuse and to
produce the design.

8. Click Next to display the Memory Options window (or the AXI Parameter Options
window if AXI Enable is checked on the Memory Type selection page).

X-Ref Target - Figure 1-21

Figure 1-21: Create Custom Part

UG406_C1_19_081109

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 25
UG406 October 19, 2011

Getting Started with the CORE Generator Software

AXI Parameter Options

This feature allows the selection of AXI parameters for the controller (Figure 1-22). These
are standard AXI parameters or parameters specific to the AXI4 interface. Details are
available in the ARM® AMBA® specifications. [Ref 1]

These parameters specific to the AXI4 interface logic can be configured:

• Address Width and AXI ID Width: When invoked from XPS, address width and ID
width settings are automatically set by XPS so the options are not shown.

• Base and High Address: Sets the system address space allocated to the memory
controller. These values must be a power of 2 with a size of at least 4 KB, and the base
address must be aligned to the size of the memory space.

• Narrow Burst Support: Deselecting this option allows the AXI4 interface to remove
logic to handle AXI narrow bursts to save resources and improving timing. XPS
normally auto-calculates whether narrow burst support can be disabled based on the
known behavior of connected AXI masters.

Inferred AXI interconnect parameter settings are also available in the EDK flow.
Details on the interconnect parameters and how they are handled in XPS are available
in the EDK documentation.

X-Ref Target - Figure 1-22

Figure 1-22: Setting AXI Parameter Options

UG406_c1_93_041311

http://www.xilinx.com

26 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

Setting the DDR3 Memory Parameter Option

This feature allows the selection of various memory mode register values, as supported by
the controller’s specification (Figure 1-23).

The mode register value is loaded into the load mode register during initialization. Burst
length is automatically set by the MIG tool to provide the best performance.

To optimize controller efficiency, the addressing mapping scheme is user-selectable as
Bank-Row-Column or Row-Bank-Column, depending on organization of application
data.

X-Ref Target - Figure 1-23

Figure 1-23: Setting Memory Mode Options

UG406_c1_20_011011

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 27
UG406 October 19, 2011

Getting Started with the CORE Generator Software

Click Next to display the FPGA Options window (Figure 1-24).

• System Clock. This option (not available in the EDK flow) selects the input clock type:
single-ended or differential (Figure 1-25).

X-Ref Target - Figure 1-24

Figure 1-24: FPGA Options

X-Ref Target - Figure 1-25

Figure 1-25: System Clock Selection

UG406_c1_21_041610

UG406_C1_23_081109

http://www.xilinx.com

28 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

• Debug Signals Control. Selecting this option (not available in the EDK flow) enables
calibration status and user port signals to be port mapped to the ChipScope™
analyzer modules in the design_top module (Figure 1-26). This helps in monitoring
traffic on the user interface port with the ChipScope analyzer. When the generated
design is run in batch mode using ise_flow.bat in the design’s par folder, the
CORE Generator software is called to generate ChipScope analyzer modules (that is,
NGC files are generated). Deselecting the Debug Signals Control option leaves the
debug signals unconnected in the design_top module. No ChipScope analyzer
modules are instantiated in the design_top module and no ChipScope analyzer
modules are generated by the CORE Generator software. The debug port is always
disabled for functional simulations.

• Internal Vref Selection. Internal Vref can be used for data group banks to allow the
use of the VREF pins for normal I/O usage.

X-Ref Target - Figure 1-26

Figure 1-26: Debug Signals Control

X-Ref Target - Figure 1-27

Figure 1-27: Internal Vref Selection

UG406_C1_22_081109

UG406_c1_86_041610

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 29
UG406 October 19, 2011

Getting Started with the CORE Generator Software

Click Next to display the DCI description window (Figure 1-28).

• Digitally Controlled Impedance (DCI). The DCI option allows the use of the FPGA’s
on-chip internal resistors for termination. DCI must be used for DQ and DQS/DQS#
signals. DCI cascade might have to be used, depending on the pinout and bank
selection.

X-Ref Target - Figure 1-28

Figure 1-28: DCI Description

UG406_c1_25_041610

http://www.xilinx.com

30 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

• Pin/Bank Selection. The Pin/Bank Selection mode allows the user to specify an
existing pinout and generate a new RTL core for this pinout, or pick banks for a new
design. Figure 1-29 shows the option for using an existing pinout. The user must
assign the appropriate pins for each signal. A choice of banks is available to narrow
down the list of pins. It is not mandatory to select the banks prior to selection of the
pins. Click Validate to check a pinout against the MIG pinout rules.

• For Virtex-6 FPGAs, the user must also reserve IOBs for BUFR/BUFIO signals.
Figure 1-30 shows how to reserve pins corresponding to the IOBs for such signals. The
user can also select the master banks for the I/Os in this window.

X-Ref Target - Figure 1-29

Figure 1-29: Pin Selection Using an Existing Pinout

UG406_c1_88_072310

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 31
UG406 October 19, 2011

Getting Started with the CORE Generator Software

X-Ref Target - Figure 1-30

Figure 1-30: Reserving IOBs for BUFR/BUFIO Signals

UG406_c1_89_072310

http://www.xilinx.com

32 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

Click New Design in the Pin/Bank Selection mode, then click Next to display the Bank
Selection window (Figure 1-31).

Bank Selection

This feature allows the selection of banks for the memory interface. Banks can be selected
for different classes of memory signals, such as:

• Address and control signals

• Data signals

• System clock

For customized settings, click Deselect Banks and select the appropriate bank and
memory signals. Click Next to move to the next page if the default setting is used.

X-Ref Target - Figure 1-31

Figure 1-31: Bank Selection

UG406_c1_27_041610

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 33
UG406 October 19, 2011

Getting Started with the CORE Generator Software

• Address Group Selection. Select the address/control group from one of the white
banks. Only inner columns are allowed (Figure 1-32).

X-Ref Target - Figure 1-32

Figure 1-32: Address Group Selection

UG406_c1_29_041610

http://www.xilinx.com

34 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

• Data Group Selection. After the address group is assigned, the MIG tool only allows
the data group to be chosen within the banks inside the black box, as shown in
Figure 1-33.

• Master Bank Selection. Two extra pins are required to set up a DCI reference that
provides better signal integrity. Select the master bank from one of the list of banks
shown in the pull-down menu (Figure 1-34).

X-Ref Target - Figure 1-33

Figure 1-33: Data Group Selection

X-Ref Target - Figure 1-34

Figure 1-34: Master Bank Selection

UG406_c1_30_052710

UG406_c1_31_041610

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 35
UG406 October 19, 2011

Getting Started with the CORE Generator Software

• System Clock Group Selection. Select the system clock group from any one of the
enabled banks (Figure 1-35).

To unselect the banks that are selected, click the Deselect Banks button. To restore the
defaults, click the Restore Defaults button.

X-Ref Target - Figure 1-35

Figure 1-35: System Clock Group Selection

UG406_c1_33_041610

http://www.xilinx.com

36 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

For detailed bank selection rules, click on the Description tab (Figure 1-36).

Click Next to display the Summary window.

X-Ref Target - Figure 1-36

Figure 1-36: Bank Selection Rule Description

UG406_c1_34_041610

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 37
UG406 October 19, 2011

Getting Started with the CORE Generator Software

Summary

This window provides the complete details about the Virtex-6 FPGA memory core
selection, interface parameters, CORE Generator software options, and FPGA options of
the active project (Figure 1-37). In the EDK flow, this is the last screen, and clicking the
Finish button (replaces the Next button) saves the changes and returns the user to the XPS
tool.
X-Ref Target - Figure 1-37

Figure 1-37: Summary

UG406_c1_35_041311

http://www.xilinx.com

38 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

Memory Model License

The MIG tool can output a chosen vendor’s memory model for simulation purposes (not
available in the EDK flow) for memories such as DDR, DDR2, and DDR3 SDRAMs. To
access the models in the output sim folder, click the license agreement (Figure 1-38). Read
the license agreement and check the Accept License Agreement box to accept it. If the
license agreement is not agreed to, the memory model is not made available. A memory
model is necessary to simulate the design.

Click Next to move to PCB Information page.

PCB Information

This page displays the PCB-related information to be considered while designing the
board that uses the MIG tool generated designs. Click Next to move to the Design Notes
page.

Design Notes

Click the Generate button (not available in the EDK flow) to generate the design files. The
MIG tool generates two output directories: example_design and user_design. After
generating the design, the MIG GUI closes.

X-Ref Target - Figure 1-38

Figure 1-38: License Agreement

UG406_C1_36_081109

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 39
UG406 October 19, 2011

Getting Started with the CORE Generator Software

Directory Structure and File Descriptions

Overview

Output Directory Structure

The MIG tool outputs (non-EDK flow) are generated with folder name <component
name>.

Note: In the EDK flow, the MIG project file is stored in <EDK Project
Directory>/data/<Instance Name>_mig_saved.prj and should be retained with the XPS
project. The MIG UCF with pin location information is written to <EDK Project
Directory>/__xps/<Instance Name>/mig.ucf and is translated to an EDK core-level UCF at
<EDK Project Directory>/implementation/<Instance Name>_wrapper/<Instance
Name>.ucf during builds.

Figure 1-39 shows the output directory structure of the selected memory controller design
from the MIG tool. In the <component name> directory, three folders are created:

• docs

• example_design

• user_design

Directory and File Contents

The Virtex-6 device core directories and their associated files are listed in this section.

<component name>/docs

The docs folder contains the PDF documentation.

<component name>/example_design/

The example_design folder contains three folders, namely, controller,
example_top, and phy.

example_design/rtl/controller

X-Ref Target - Figure 1-39

Figure 1-39: Directory Structure

UG406_C1_39_081109

http://www.xilinx.com

40 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

This directory contains the memory controller that is instantiated in example_design
(Table 1-1).

example_design/rtl/top

This directory contains the example design (Table 1-2).

Table 1-1: Modules in example_design/rtl/controller Directory

Name Description

arb_mux.v/vhd This is the top-level module for arbitration logic.

arb_row_col.v/vhd This block receives requests to send row and column
commands from the bank machines and selects one request, if
any, for each state.

arb_select.v/vhd This module selects a row and column command from the
requested information provided by the bank machines.

bank_cntrl.v/vhd This structural block instantiates the three subblocks that
comprise the bank machine.

bank_common.v/vhd This module computes various items that cross all of the bank
machines.

bank_compare.v/vhd This module stores the request for a bank machine.

bank_mach.v/vhd This is the top-level bank machine block.

bank_queue.v/vhd This is the bank machine queue controller.

bank_state.v/vhd This is the primary bank state machine.

col_mach.v/vhd This module manages the DQ bus.

mc.v/vhd This is the top-level module of the MC.

rank_cntrl.v/vhd This module manages various rank-level timing parameters.

rank_common.v/vhd This module contains logic common to all rank machines. It
contains a clock prescaler and arbiters for refresh and periodic
read.

rank_mach.v/vhd This is the top-level rank machine structural block.

round_robin_arb.v/vhd This is a simple round-robin arbiter.

Table 1-2: Modules in example_design/rtl/top Directory

Name Description

example_design_top.v/vhd This top-level module serves as an example for
connecting the user design to the Virtex-6 FPGA memory
interface core.

clk_ibuf.v/vhd This module instantiates the input clock buffer.

iodelay_ctrl.v/vhd This module instantiates IDELAYCNTRL primitives
needed for IODELAY use.

infrastructure.v/vhd This module helps in clock generation and distribution,
and reset synchronization.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 41
UG406 October 19, 2011

Getting Started with the CORE Generator Software

example_design/rtl/phy

This directory contains the Virtex-6 FPGA memory interface PHY implementation
(Table 1-3).

mem_intfc.v/vhd This is the top-level memory interface block with the
native interface.

memc_ui_top.v/vhd This is the top-level memory interface controller wrapper
with the user interface.

Table 1-3: Modules in example_design/rtl/phy Directory

Name Description

circ_buffer.v/vhd This is a circular buffer for synchronizing signals between
clock domains.

phy_ck_iob.v/vhd This module provides clock forwarding to memory and pad
loopback into the FPGA.

phy_clock_io.v/vhd This is the top-level module for CK/CK# clock forwarding to
memory and feedback into the FPGA.

phy_control_io.v/vhd This module instantiates IOBs for output-only control and
address signals to the SDRAM.

phy_data_io.v/vhd This is the top-level module for all data-related (DQ, DQS,
DM) IOB logic.

phy_dly_ctrl.v/vhd This module provides centralized control for all IODELAY
elements in interface IODELAYs.

phy_dm_iob.v/vhd This module places the data mask signals into the IOBs.

phy_dq_iob.v/vhd This module instantiates I/O-related logic for DQ.

phy_dqs_iob.v/vhd This module instantiates I/O-related logic for DQS.

phy_init.v/vhd This module provides memory initialization and overall
master state control during initialization and calibration.

phy_pd.v/vhd This module provides phase detector calibration.

phy_pd_top.v/vhd This is the top-level module of the phase detector.

phy_rdclk_gen.v/vhd This module generates and distributes the capture clock.

phy_rdctrl_sync.v/vhd This module synchronizes the read control signal from
MC/PHY rdlvl logic to read capture logic.

phy_rddata_sync.v/vhd This module synchronizes captured read data to the core
clock domain.

phy_rdlvl.v/vhd This module provides read-leveling calibration logic.

phy_read.v/vhd This is the top-level module for the PHY read logic.

phy_top.v/vhd This is the top-level module for memory in the PHY
interface.

Table 1-2: Modules in example_design/rtl/top Directory (Cont’d)

Name Description

http://www.xilinx.com

42 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

example_design/rtl/traffic_gen

This directory contains the traffic generator that provides the stimulus to the
Virtex-6 FPGA memory controller (Table 1-4).

phy_write.v/vhd This module delays various write control signals based on
user-specific timing parameters (for example, CAS write
latency).

phy_wrlvl.v/vhd This module provides calibration for write leveling.

rd_bitslip.v/vhd This module shifts data captured by the ISERDES in bit time
increments to provide aligned data across all DQS groups.

Table 1-4: Modules in example_design/rtl/traffic_gen Directory

Name Description

mcb_traffic_gen.v/vhd This is the top level of the traffic generator.

cmd_gen.v/vhd This is the command generator. This module provides
independent control of generating the types of
commands, addresses, and burst lengths.

cmd_prbs_gen.v/vhd This is a pseudo-random binary sequence (PRBS)
generator for generating PRBS commands, addresses,
and burst lengths.

mcb_flow_control.v/vhd This module generates flow control logic between the
memory controller core and the cmd_gen,
read_data_path, and write_data_path
modules.

read_data_path.v/vhd This is the top level for the read datapath.

read_posted_fifo.v/vhd This module stores the read command that is sent to
the memory controller, and its FIFO output is used to
generate expect data for read data comparisons.

rd_data_gen.v/vhd This module generates timing control for reads and
ready signals to mcb_flow_control.v/vhd.

write_data_path.v/vhd This is the top level for the write datapath.

wr_data_g.v/vhden.v/vhd This module generates timing control for writes and
ready signals to mcb_flow_control.v/vhd.

v6_data_gen.v/vhd This module generates different data patterns.

a_fifo.v/vhd This is a synchronous FIFO using LUTRAMs.

data_prbs_gen.v/vhd This is a 32-bit linear feedback shift register (LFSR) for
generating PRBS data patterns.

init_mem_pattern_ctr.v/vhd This module generates flow control logic for the traffic
generator.

Table 1-3: Modules in example_design/rtl/phy Directory (Cont’d)

Name Description

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 43
UG406 October 19, 2011

Getting Started with the CORE Generator Software

example_design/rtl/ui

This directory contains the user interface code that mediates between the native interface
of the memory controller and user applications (Table 1-5).

<component name>/example_design/par

Table 1-6 lists the modules in the example_design/par directory.

Caution! The ise_flow.bat file in the par folder of the <component name> directory
contains the recommended build options for the design. Failure to follow the recommended build
options could produce unexpected results.

<component name>/example_design/sim

Table 1-7 lists the modules in the example_design/sim directory.

Table 1-5: Modules in example_design/rtl/ui_top Directory

Name Description

ui_cmd.v/vhd This is the user interface command port.

ui_rd_data.v/vhd This is the user interface read buffer. It reorders read data returned
from the memory controller back to the request order.

ui_wr_data.v/vhd This is the user interface write buffer. It reorders write data
returned from the memory controller back to the request order.

ui_top.v/vhd This is the top level of the memory controller user interface.

Table 1-6: Modules in example_design/par Directory

Name Description

<component_name>_example_design.ucf This is the UCF for the core and the
example design.

create_ise.bat Double-clicking this file creates an ISE
tools project that contains the
recommended build options for the
design. Double-clicking the ISE tools
project file opens up the ISE software in
GUI mode with all the project settings.

ise_flow.bat This script file runs the design through
synthesis, build, map, and par. This file
sets all the required options and should be
referred to for the recommended build
options for the design.

Table 1-7: Modules in example_design/sim Directory

Name Description

ddr2_model.v

ddr3_model.v

These are the DDR2 and DDR3 SDRAM memory
models.

ddr2_model_parameters.vh

ddr3_model_parameters.vh

These files contain the DDR2 and DDR3 SDRAM
memory model parameter setting.

http://www.xilinx.com

44 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

<component name>/user_design

The example_design folder contains three folders, namely, controller,
example_top, and phy.

user_design/rtl/controller

This directory contains the memory controller that is instantiated in the example design
(Table 1-8).

glbl.v This file is used for initializing the simulation
environment.

sim.do This SDC file has design constraints for the Synplify
Pro synthesis tool.

sim.exe Double-clicking this file causes the design to be
automatically simulated using the ModelSim
simulator.

sim_tb_top.v/vhd This is the simulation top file.

Table 1-8: Modules in user_design/rtl/controller Directory

Name Description

arb_mux.v/vhd This is the top-level module of arbitration logic.

arb_row_col.v/vhd This block receives requests to send row and column
commands from the bank machines and selects one request, if
any, for each state.

arb_select.v/vhd This module selects a row and column command from the
request information provided by the bank machines.

bank_cntrl.v/vhd This structural block instantiates the three subblocks that
comprise the bank machine.

bank_common.v/vhd This module computes various items that cross all of the bank
machines.

bank_compare.v/vhd This module stores the request for a bank machine.

bank_mach.v/vhd This is the top-level bank machine block.

bank_queue.v/vhd This is the bank machine queue controller.

bank_state.v/vhd This is the primary bank state machine.

col_mach.v/vhd This module manages the DQ bus.

mc.v/vhd This is the top-level module of the MC.

mem_intfc.v/vhd This top-level memory interface block instantiates the
controller and the PHY.

rank_cntrl.v/vhd This module manages various rank-level timing parameters.

Table 1-7: Modules in example_design/sim Directory (Cont’d)

Name Description

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 45
UG406 October 19, 2011

Getting Started with the CORE Generator Software

user_design/rtl/top

This directory contains the user design (Table 1-9).

user_design/rtl/phy

This directory contains the Virtex-6 FPGA memory interface PHY implementation
(Table 1-10).

rank_common.v/vhd This module contains logic common to all rank machines. It
contains a clock prescaler and arbiters for refresh and periodic
read.

rank_mach.v/vhd This is the top-level rank machine structural block.

round_robin_arb.v/vhd This is a simple round-robin arbiter.

Table 1-9: Modules in user_design/rtl/top Directory

Name Description

iodelay_ctrl.v/vhd This module instantiates IDELAYCNTRL primitives needed
for IODELAY use.

clk_ibuf.v/vhd This module instantiates the input clock buffer.

mem_intfc.v/vhd This is the top-level memory interface block that instantiates
the controller and the PHY.

memc_ui_top.v/vhd This is the top-level memory controller module.

infrastructure.v/vhd This module helps in clock generation and distribution, and
reset synchronization.

user_design_top.v/vhd This top-level module serves as an example for connecting the
user design to the Virtex-6 FPGA memory interface core.

Table 1-10: Modules in user_design/rtl/phy Directory

Name Description

circ_buffer.v/vhd This is the circular buffer for synchronizing signals between
clock domains.

phy_ck_iob.v/vhd This module provides clock forwarding to memory and pad
loopback into the FPGA.

phy_clock_io.v/vhd This is the top-level module for CK/CK# clock forwarding to
memory and feedback into the FPGA.

phy_control_io.v/vhd This module instantiates IOBs for output-only control and
address signals to the SDRAM.

phy_data_io.v/vhd This is the top-level module for all data-related (DQ, DQS,
DM) IOB logic.

phy_dly_ctrl.v/vhd This module provides centralized control for all IODELAY
elements in interface IODELAYs.

phy_dm_iob.v/vhd This module places the data mask signals into the IOBs.

Table 1-8: Modules in user_design/rtl/controller Directory (Cont’d)

Name Description

http://www.xilinx.com

46 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

user_design/rtl/ui

This directory contains the user interface code that mediates between the native interface
of the memory controller and user applications (Table 1-11).

user_design/rtl/ecc

This directory contains the optional error correcting code that implements single bit error
correction and two bit error detection (Table 1-12). All modules are instantiated in the
mc.v/vhd RTL.

phy_dq_iob.v/vhd This module instantiates I/O-related logic for DQ.

phy_dqs_iob.v/vhd This module instantiates I/O-related logic for DQS.

phy_init.v/vhd This module provides memory initialization and overall
master state control during initialization and calibration.

phy_pd.v/vhd This module provides phase detector calibration.

phy_pd_top.v/vhd This is the top-level module of the phase detector.

phy_rdclk_gen.v/vhd This module generates and distributes the capture clock.

phy_rdctrl_sync.v/vhd This module synchronizes the read control signal from
MC/PHY rdlvl logic to read capture logic.

phy_rddata_sync.v/vhd This module synchronizes captured read data to the core
clock domain.

phy_rdlvl.v/vhd This module provides read-leveling calibration logic.

phy_read.v/vhd This is the top-level module for the PHY read logic.

phy_top.v/vhd This is the top-level module for the memory PHY interface.

phy_write.v/vhd This module delays various write control signals based on
user-specific timing parameters (for example, CAS write
latency).

phy_wrlvl.v/vhd This module provides calibration for write leveling.

rd_bitslip.v/vhd This module shifts data captured by the ISERDES in bit time
increments to provide aligned data across all DQS groups.

Table 1-11: Modules In user_design/rtl/ui Directory

Name Description

ui_cmd.v/vhd This is the user interface command port.

ui_rd_data.v/vhd This is the user interface read buffer. It reorders read data returned
from the memory controller back to the request order.

ui_wr_data.v/vhd This is the user interface write buffer. It reorders write data returned
from the memory controller back to the request order.

ui_top.v/vhd This is the top level of the memory controller user interface.

Table 1-10: Modules in user_design/rtl/phy Directory (Cont’d)

Name Description

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 47
UG406 October 19, 2011

Getting Started with the CORE Generator Software

<component name>/user_design/par

Table 1-13 lists the modules in the user_design/par directory.

Caution! The ise_flow.bat file in the par folder of the <component name> directory
contains the recommended build options for the design. Failure to follow the recommended build
options can produce unexpected results.

Table 1-12: Modules in user_design/rtl/ecc

Name Description

ecc_buf.v/vhd This data buffer block temporarily holds the data for the
read-modify-write cycles.

ecc_gen.v/vhd This module generates the ECC H matrix.

ecc_merge_enc.vhd This module computes the ECC bits and appends them to data.

ecc_dec_fix.v/vhd This module decodes and fixes the read data.

Table 1-13: Modules in user_design/par Directory

Name Description

<component_name>_example_design.ucf This is the UCF for the core and the
example design.

ise_flow.bat This script file runs the design through
synthesis, build, map, and par, and sets all
the required options. Refer to this file for
the recommended build options for the
design. Double-clicking the
create_ise.bat file creates an ISE tools
project that contains the recommended
build options for the design.
Double-clicking the ISE tools project file
opens up the ISE software in GUI mode
with all the project settings.

http://www.xilinx.com

48 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

<component name>/user_design/sim

Table 1-14 lists the modules in the user_design/sim directory.

Table 1-14: Modules in user_design/sim Directory

Name Description

sim.do This SDC file has design constraints for the Synplify
Pro synthesis tool.

sim.exe Double-clicking this file causes the design to be
automatically simulated using the ModelSim
simulator.

ddr2_model.v

ddr3_model.v

These are the DDR2 and DDR3 SDRAM memory
models.

ddr2_model_parameters.vh

ddr3_model_parameters.vh

These files contain the DDR2 and DDR3 SDRAM
memory model parameter settings.

sim_tb_top.v/vhd This is the simulation top file.

glbl.v This file is used for initializing the simulation
environment.

mcb_traffic_gen.v/vhd This is the top level of the traffic generator.

cmd_gen.v/vhd This is the command generator. This module provides
independent control of generating types of commands,
addresses, and burst lengths.

cmd_prbs_gen.v/vhd This is a PRBS generator for generating PRBS
commands, addresses, and burst lengths.

mcb_flow_control.v/vhd This module generates flow control logic between the
memory controller core and the cmd_gen,
read_data_path, and write_data_path modules.

read_data_path.v/vhd This is the top level for the read datapath.

read_posted_fifo.v/vhd This module stores the read command that is sent to the
memory controller, and its FIFO output is used to
generate expect data for the read data comparison.

rd_data_gen.v/vhd This module generates timing control for read and
ready signals to mcb_flow_control.v/vhd.

write_data_path.v/vhd This is the top level for the write datapath.

wr_data_gen.v/vhd This module generates timing control for write and
ready signals to mcb_flow_control.v/vhd.

v6_data_gen.v/vhd This module generates different data patterns.

a_fifo.v/vhd This is a synchronous FIFO using LUTRAMs.

data_prbs_gen.v/vhd This is a 32-bit LFSR for generating PRBS data patterns.

init_mem_pattern_ctr.v/vhd This module generates flow control logic for the traffic
generator.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 49
UG406 October 19, 2011

Getting Started with the CORE Generator Software

Verify UCF and Update Design and UCF Rules
Verify UCF and Update Design and UCF verifies the input UCF for bank selection, pin
allocation, and constraint allocation rules and generates warnings or error reports for any
issues. It does not verify the input .prj file. This feature is useful to verify any UCF pinout
changes after the design is generated from the MIG tool. The user must load the MIG
generated .prj file (the original .prj file) without any modifications. The verification
report is not correct if any of the parameters in the original .prj file are altered. In the
CORE Generator tool, the recustomization option should be selected to reload the project.
The design can be generated only when Verify UCF does not report an error in the
verification report. Warnings can be ignored while generating a design.

These rules are verified from the input UCF:

• If a pin is allocated to more than one signal, the tool reports an error.

• Further verification does not occur if the UCF does not adhere to the uniqueness
property.

• The pins related to one DQS set should be allocated in the same bank.

• When the frequency of the configuration is more than 400 MHz, the IOB distance
calculation is verified according to Data/Strobe/Mask Span Allocation Rules,
page 139.

• Banks should be allocated for the address and data within the vicinity arena.

• An error occurs if a bank is allocated outside the vicinity arena.

• The system clock bank can be selected adjacent to the GC bank (24, 25, 34, and 35) or
to the bank adjacent to the capture clock bank.

• The system clock bank can be selected adjacent to the capture clock bank only
when the frequency of this controller is not repeated in any of the other
controllers. If the frequency of this controller is repeated in any of the other
controllers, the system clock group must be allocated to any of the GC banks (24,
25, 34, and 35) but not to the bank where only CC pins are available (this occurs
when a bank adjacent to the capture clock bank is used).

• The signal pairs sys_clk and clk_ref are allocated to the CC pair or GC pair pins
(for a bank adjacent to the capture clock bank) or to the GC pair pins (for GC
banks).

• The memory clock signals (CK and CK#) should be allocated to the differential pair
pins (P-N pair).

• The DQS pair should be allocated to the differential pair pins.

• The capture clock (BUFIO) and resynchronization clock (BUFR) constraints are
verified as follows:

• The capture clock LOC constraint should be associated with its corresponding
strobe set. Otherwise, the tool reports an error and provides the valid pins to
correct the constraints and rerun the verification.

• The resynchronization clock LOC constraint should be associated with the
corresponding column where its related strobes are allocated. If the
resynchronization clock is not associated with its corresponding strobe pins, the
tool reports an error and provides the valid pins to correct the constraints and
rerun the verification.

• In the DCI CASCADE syntax, the selected configuration should require the master
bank.

• The slave banks provided should be valid.

http://www.xilinx.com

50 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

• A valid mixed-mode clock manager (MMCM) constraint value should be provided,
otherwise a warning is generated.

If the UCF satisfies the above rules, the updated design is generated. The design:

• Provides the latest HDL.

• Updates the UCF with the latest clock constraints or any timing ignores (TIGs)
provided by keeping the same pinout.

• Generates even the compatible UCFs if the project loaded contains the compatible
FPGA selection.

Error Messages

This section describes the error messages that are generated when verifying the UCF. The
reference UCF must follow the MIG naming conventions (refer to the UCF generated by
the MIG tool or names used for the ML605 board).

• Uniqueness: If two or more signals are allocated to the same pins in the reference
UCF, an error message is listed in the directed file with a user-assigned name.

The error message format is “<signalname1> and <signalname2> are allocated to the
same pin.” For example, if ddr3_dq[0] and ddr3_dqs[0] are allocated to the same pin,
such as:

NET "ddr3_dq[0]" LOC = "D12";

NET "ddr3_dqs[0]" LOC = "D12";

Then this error message is displayed:

ERROR: ddr3_dq[0] and ddr3_dqs[0] are allocated to the same pin.
Pins are not unique.

• Association: Signals related to the same DQS set should be allocated in the same
bank, otherwise the MIG tool reports an error message.

The error message format is “<signalname1> and <signalname2> are not allocated in the
same bank.” For example:

ERROR: ddr3_dq[16](26) and ddr3_dq[23](25) are not allocated in the
same bank

ERROR: ddr3_dq[17](26) and ddr3_dq[23](25) are not allocated in the
same bank

ERROR: ddr3_dq[18](26) and ddr3_dq[23](25) are not allocated in the
same bank

ERROR: ddr3_dq[19](26) and ddr3_dq[23](25) are not allocated in the
same bank

ERROR: ddr3_dq[20](26) and ddr3_dq[23](25) are not allocated in the
same bank

ERROR: ddr3_dq[21](26) and ddr3_dq[23](25) are not allocated in the
same bank

ERROR: ddr3_dq[22](26) and ddr3_dq[23](25) are not allocated in the
same bank

ERROR: ddr3_dq[23](25) and ddr3_dm[2](26) are not allocated in the
same bank

• IOB Distance Verification: This property is verified when the frequency selected for
the configuration is greater than 400 MHz for SDRAM designs.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 51
UG406 October 19, 2011

Getting Started with the CORE Generator Software

• A warning message is displayed when the distance between the DQS and its
corresponding pins is more than eight IOB pads:

WARNING: The IOB distance between the strobe
pins'ddr3_dqs_p[0]','ddr3_dqs_n[0]' and 'ddr3_dq[3]' is greater
than 8 which may not allow the read capture circuit to function
properly above 400 MHz (800 Mbps).

WARNING: The IOB distance between the strobe
pins'ddr3_dqs_p[0]','ddr3_dqs_n[0]' and 'ddr3_dq[2]' is greater
than 8 which may not allow the read capture circuit to function
properly above 400 MHz (800 Mbps).

WARNING: The IOB distance between the strobe
pins'ddr3_dqs_p[0]','ddr3_dqs_n[0]' and 'ddr3_dq[1]' is greater
than 8 which may not allow the read capture circuit to function
properly above 400 MHz (800 Mbps).

WARNING: The IOB distance between the strobe
pins'ddr3_dqs_p[0]','ddr3_dqs_n[0]' and 'ddr3_dq[0]' is greater
than 8 which may not allow the read capture circuit to function
properly above 400 MHz (800 Mbps).

• A warning message is displayed when the DQS set is allocated across the clock
tree:

WARNING: The DQS set "ddr3_dqs_p[1]" is allocated across the clock
tree of the bank "26". Then the pins should be no more distant than
13 IOBs from the clock tree. But the pin "ddr3_dqs_n[1]" is more than
13 IOBs distant from the clock tree which may not allow the read
capture circuit to function properly above 400 MHz (800 Mbps).

WARNING: The DQS set "ddr3_dqs_p[1]" is allocated across the clock
tree of the bank "26". Then the pins should be no more distant than
13 IOBs from the clock tree. But the pin "ddr3_dq[0]" is more than
13 IOBs distant from the clock tree which may not allow the read
capture circuit to function properly above 400 MHz (800 Mbps).

• Vicinity Verification: Error messages are displayed when the pins are allocated out of
the vicinity arena.

• If the data bank selected is out of the vicinity arena, these error messages are
displayed:

ERROR: c0_ddr3_dq[0](Data) should not be allocated to bank 42. The
rule is, it can only be moved within the bank(s) "27,37,38"
specified in the input mig.prj file for "Data" group.

ERROR: c0_ddr3_dq[1](Data) should not be allocated to bank 42. The
rule is, it can only be moved within the bank(s) "27,37,38"
specified in the input mig.prj file for "Data" group.

ERROR: c0_ddr3_dq[2](Data) should not be allocated to bank 42. The
rule is, it can only be moved within the bank(s) "27,37,38"
specified in the input mig.prj file for "Data" group.

ERROR: c0_ddr3_dq[3](Data) should not be allocated to bank 42. The
rule is, it can only be moved within the bank(s) "27,37,38"
specified in the input mig.prj file for "Data" group.

ERROR: c0_ddr3_dq[4](Data) should not be allocated to bank 42. The
rule is, it can only be moved within the bank(s) "27,37,38"
specified in the input mig.prj file for "Data" group.

ERROR: c0_ddr3_dq[5](Data) should not be allocated to bank 42. The
rule is, it can only be moved within the bank(s) "27,37,38"
specified in the input mig.prj file for "Data" group.

http://www.xilinx.com

52 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

ERROR: c0_ddr3_dq[6](Data) should not be allocated to bank 42. The
rule is, it can only be moved within the bank(s) "27,37,38"
specified in the input mig.prj file for "Data" group.

ERROR: c0_ddr3_dq[7](Data) should not be allocated to bank 42. The
rule is, it can only be moved within the bank(s) "27,37,38"
specified in the input mig.prj file for "Data" group.

ERROR: c0_ddr3_dm[0](Mask) should not be allocated to bank 42. The
rule is, it can only be moved within the bank(s) "27,37,38"
specified in the input mig.prj file for "Data" group.

• Differential Pair Verification: If the system clock pins are not allocated to the
differential pairs, these error messages are displayed:

ERROR: "sys_clk_p" Should be allocated to either CC P pin or GC P
pin.

ERROR: "sys_clk_n" Should be allocated to either CC N pin or GC N
pin.

ERROR: "sys_clk_p" and "sys_clk_n" Should be allocated to either CC
or GC P/N pair.

ERROR: "clk_ref_p" Should be allocated to either CC P pin or GC P
pin.

ERROR: "clk_ref_n" Should be allocated to either CC N pin or GC N
pin.

ERROR: "clk_ref_p" and "clk_ref_n" Should be allocated to either CC
or GC P/N pair.

• Absence of Signals: If one or more signal pin pairs is missing and/or commented in
the given UCF against the selected inputs, the verification result indicates the absence
of these signal pin pairs as a warning.

The warning message format is “Signal <signal_name> is expected, but not present in
the UCF.” For example:

WARNING: Signal "ddr2_dq[15]" expected, but not present in the UCF.

WARNING: Signal "ddr2_dq[16]" expected, but not present in the UCF.

WARNING: Signal "ddr2_dq[17]" expected, but not present in the UCF.

WARNING: Signal "ddr2_dq[18]" expected, but not present in the UCF.

• Capture Clock/Resynchronization Clock Verification: These constraints are
provided only for SDRAM designs.

• This is the message format for capture clock (BUFIO) constraints:

ERROR: <Constraint name> constraint for the Strobe -
<gen_ck_cpt[<vector>]> is not provided or provided constraint may be
invalid. Following is (are) the valid <Constraint> Constraints for
this Capture Clock. But verify whether any of these IOB sites are
utilized by any other constraints or Pin LOC's (Valid constraints
for the strobe).

ERROR: BUFIO Constraint for the Capture Clock - "gen_ck_cpt[0]" is
not provided or provided BUFIO constraint is invalid. Following is
(are) the valid BUFIO Constraints for this Capture Clock. But verify
whether any of these IOB sites are utilized by any other constraints
or Pin LOC's.

AR35 - X1Y183.

AT37 - X1Y181.

AP37 - X1Y179.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 53
UG406 October 19, 2011

Getting Started with the CORE Generator Software

AJ31 - X1Y177.

ERROR: BUFIO Constraint for the Capture Clock - "gen_ck_cpt[1]" is
not provided or provided BUFIO constraint is invalid. Following
is(are) the valid BUFIO Constraints for this Capture Clock. But
verify whether any of these IOB sites are utilized by any other
constraints or Pin LOC's.

AR35 - X1Y183.

AT37 - X1Y181.

AP37 - X1Y179.

AJ31 - X1Y177.

ERROR: BUFIO Constraint for the Capture Clock - "gen_ck_cpt[2]" is
not provided or provided BUFIO constraint is invalid. Following
is(are) the valid BUFIO Constraints for this Capture Clock. But
verify whether any of these IOB sites are utilized by any other
constraints or Pin LOC's.

AR35 - X1Y183.

AT37 - X1Y181.

AP37 - X1Y179.

AJ31 - X1Y177.

ERROR: BUFIO Constraint for the Capture Clock - "gen_ck_cpt[4]" is
not provided or provided BUFIO constraint is invalid. Following
is(are) the valid BUFIO Constraints for this Capture Clock. But
verify whether any of these IOB sites are utilized by any other
constraints or Pin LOC's

AY33 - X1Y103.

AR30 - X1Y101.

AW32 - X1Y99.

AT30 - X1Y97.

• This is the message format for resynchronization clock (BUFR) constraints:

ERROR: The BUFR Constraint for the FPGA column '1' is not provided
in the UCF or Constraint provided for this column is not valid.
Following is(are) valid BUFR constraints.

AJ41 - X0Y143.

AD36 - X0Y141.

AF36 - X0Y139.

AD37 - X0Y137.

ERROR: The BUFR Constraint for the FPGA column '1' is not provided
in the UCF or Constraint provided for this column is not valid.
Following is (are) valid BUFR constraints.

AT6 - X2Y143.

AT9 - X2Y141.

AV6 - X2Y139.

AW7 - X2Y137.

• Master Bank Verification: This verifies whether the provided master bank is valid for
the selected DCI banks in the column. This error message is displayed when the valid
master bank is not provided for the column:

ERROR: the master bank "23" provided is not valid master bank.
Following are the valid master bank "24, 25" for the column "1".

http://www.xilinx.com

54 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

Quick Start Example Design

Overview

After the core is successfully generated, the example design HDL can be processed
through the Xilinx implementation toolset.

Implementing the Example Design

The ise_flow.bat script file runs the design through synthesis, translate, map, and par,
and sets all the required options. Refer to this file for the recommended build options for
the design.

Simulating the Example Design (for Designs with a Standard User Interface)

The MIG tool provides a synthesizable testbench to generate various traffic data patterns
to the MC. This testbench consists of a memc_ui_top wrapper, a traffic_generator
that generates traffic patterns through the user interface to a ui_top core, and an
infrastructure core that provides clock resources to the memc_ui_top core. A block
diagram of the example design testbench is shown in Figure 1-40.

X-Ref Target - Figure 1-40

Figure 1-40: Synthesizable Example Design Block Diagram

UG406_c1_40_051810

Ddr3_sim_tb_Top

Example Design

Infrastructure

Ui_top

app_addr
app_cmd
app_en
app_hi_pri
app_sz
app_wdf_data
app_wdf_end
app_wdf_mask
app_wdf_wren

app_rd_data
app_rd_data_en
app_rd_data_valid
app_wdf_rdy

Mem_Intfc

DDR3
SDRAM

Init
Mem

PatterCtr

Traffic
Gen

Memc_ui_top

MC

rank, bank, row, col
cmd, size
accept
use_addr
bank_mach_next
data_buf_addr

wr_data_en
wr_data_addr
wr_data_en
wr_data_be

rd_data_en
rd_data_addr
rd_data

Phy_top

Parameter:
BEGIN_ADDR
END_ADDR

error

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 55
UG406 October 19, 2011

Getting Started with the CORE Generator Software

Figure 1-41 shows the simulation result of a simple read and write transaction between the
tb_top and memc_intfc modules.

Simulating the Example Design (for Designs with an AXI4 Interface)

The MIG tool provides synthesizable AXI4 testbench to generate various traffic patterns to
the MC. This testbench consists of a memc_ui_top wrapper, a traffic generator that
generates traffic patterns through the user interface to a ui_top core, and an infrastructure
core that provides clock resources to the memc_ui_top core. Figure 1-42 shows a block
diagram of the example design testbench.

X-Ref Target - Figure 1-41

Figure 1-41: User Interface Read and Write Cycle

UG406_c1_41_050709

Address as data (0x...0500) values are written
to the data FIFO when app_wdf_wren is
asserted and app_wdf_end indicates the

last cycle of write input data. A write command
is issued after the last write data cycle.

Read command to 0x520
is accepted here.

Memory user interface asserts
app_rd_data_valid signal to

indicate valid data (0x...0520)
returning from memory.

http://www.xilinx.com

56 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

Figure 1-43 shows the simple write transaction being performed on the AXI4 interface.
This consists of a command phase, data phase and the response phase as shown in
Figure 1-43. This follows the standard AXI4 protocol.

Figure 1-44 shows the simple read transaction being performed on the AXI4 interface. This
consists of a command phase and data phase shown in Figure 1-43. This transaction
follows the standard AXI4 protocol.

X-Ref Target - Figure 1-42

Figure 1-42: Synthesizable Example Design Block for AXI4 Interface

X-Ref Target - Figure 1-43

Figure 1-43: AXI4 Interface Write Cycle

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 57
UG406 October 19, 2011

Getting Started with the CORE Generator Software

Traffic Generator Operation

The traffic generator module contained within the synthesizable testbench can be
parameterized to create various stimulus patterns for the memory design. It can produce
repetitive test patterns for verifying design integrity as well as pseudo-random data
streams that model real-world traffic.

The user can define the address range through the BEGIN_ADDRESS and
END_ADDRESS parameters. The Init Memory Pattern Control block directs the traffic
generator to step sequentially through all the addresses in the address space, writing the
appropriate data value to each location in the memory device as determined by the
selected data pattern. By default, the testbench uses the address as the data pattern, but the
data pattern in this example design can be modified using vio_data_mode signals that can
be modified within the ChipScope analyzer.

When the memory has been initialized, the traffic generator begins stimulating the user
interface port to create traffic to and from the memory device. By default, the traffic
generator sends pseudo-random commands to the port, meaning that the instruction
sequences (R/W, R, W, etc.) and addresses are determined by PRBS generator logic in the
traffic generator module.

The read data returning from the memory device is accessed by the traffic generator
through the user interface read data port and compared against internally generated
“expect” data. If an error is detected (that is, there is a mismatch between the read data and
expected data), an error signal is asserted and the readback address, readback data, and
expect data are latched into the error_status outputs.

The AXI4 traffic generator supports these features:

• Data widths of 32, 64, 128, 256, and 512 bits

• INCR/WRAP only. Does not support FIXED mode. A parameter enables the support
for wrapping bursts

• Little-endian mode operation

• Data pattern generation parameterized (changes during compile time)

• Parameter-controlled ID generation. By default, all transactions have IDs that
increment with every transaction. The IDs count up to 16 for ID widths greater than 4
and count up to the maximum ID value for ID widths less than 4. For example, if the
ID width is 3, it counts up to 8.

• Command interface to control the data flow

X-Ref Target - Figure 1-44

Figure 1-44: AXI4 Interface Read Cycle

http://www.xilinx.com

58 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

• The wrapper and the traffic generator are modular and designed to be used in
standalone mode

• Pseudo-random burst lengths and read/write generation

• Watchdog timer that times out if no response is received from the AXI4 slave after a
fixed number of clock cycles

Modifying the Example Design
The provided example_top design comprises traffic generator modules and can be
modified to tailor different command and data patterns. A few high-level parameters can
be modified in the example_top.v/vhd module. Table 1-15 describes these parameters.

Table 1-15: Traffic Generator Parameters Set in the example_top Module

Parameter Parameter Description Parameter Value

FAMILY Indicates the family type. The value of this parameter is “VIRTEX6”.

PORT_MODE Sets the port mode. Valid setting for this parameter is:
BI_MODE: Generate a WRITE data pattern
and monitor the READ data for comparison.

BEGIN_ADDRESS Sets the memory start address
boundary.

This parameter defines the start boundary for
the port address space. The least-significant
bits [3:0] of this value are ignored.

END_ADDRESS Sets the memory end address
boundary.

This parameter defines the end boundary for
the port address space. The least-significant
bits [3:0] of this value are ignored.

PRBS_SADDR_MASK_POS Sets the 32-bit OR MASK position. This parameter is used with the PRBS address
generator to shift random addresses up into
the port address space. The BEGIN_ADDRESS
value is ORed with the PRBS address for bit
positions that have a “1” in this mask.

PRBS_EADDR_MASK_POS Sets the 32-bit AND MASK
position.

This parameter is used with the PRBS address
generator to shift random addresses down into
the port address space. The END_ADDRESS
value is ANDed with the PRBS address for bit
positions that have a “1” in this mask.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 59
UG406 October 19, 2011

Getting Started with the CORE Generator Software

CMD_PATTERN This parameter sets the command
pattern circuits to be generated. For
a larger device, the
CMD_PATTERN can be set to
“CGEN_ALL”. This parameter
enables all supported command
pattern circuits to be generated.
However, it is sometimes necessary
to limit a specific command pattern
because of limited resources in a
smaller device.

Valid settings for this signal are:

• CGEN_FIXED: The address, burst length,
and instruction are taken directly from the
fixed_addr_i, fixed_bl_i, and fixed_instr_i
inputs.

• CGEN_SEQUENTIAL: The address is
incremented sequentially, and the increment
is determined by the data port size.

• CGEN_PRBS: A 32-stage linear feedback
shift register (LFSR) generates
pseudo-random addresses, burst lengths,
and instruction sequences. The seed can be
set from the 32-bit cmd_seed input.

• CGEN_ALL (default): This option turns on
all of the above options and allows
addr_mode_i, instr_mode_i, and bl_mode_i
to select the type of generation during run
time.

DATA_PATTERN This parameter sets the data pattern
circuits to be generated. For larger
devices, the DATA_PATTERN can
be set to “DGEN_ALL”. This
parameter enables all supported
data pattern circuits to be
generated. However it is
sometimes necessary to limit a
specific command pattern because
of limited resources in a smaller
device.

Valid settings for this parameter are:

• ADDR (default): The address is used as a
data pattern.

• HAMMER: All 1s are on the DQ pins
during the rising edge of DQS, and all 0s are
on the DQ pins during the falling edge of
DQS.

• WALKING1: Walking 1s are on the DQ pins
and the starting position of 1 depends on
the address value.

• WALKING0: Walking 0s are on the DQ pins
and the starting position of 0 depends on
the address value.

• NEIGHBOR: The Hammer pattern is on all
DQ pins except one. The address
determines the exception pin location.

• PRBS: A 32-stage LFSR generates random
data and is seeded by the starting address.

• DGEN_ALL: This option turns on all the
above options and allows data_mode_i to
select the type of data pattern generation
during run time.

ENFORCE_RD_WR Enforce read/write sequence from
the test bench

This parameter allows the user to control the
read and write sequence from the test bench.

ENFORCE_RD_WR_CMD 8-bit value that controls the read
and write sequence

This 8-bit parameter controls the read and
write sequence. A one indicates a write
operation and a zero indicates a read
operation. For example, 8'h11 indicates a
write followed by three reads, and this
operation is repeated twice.

Table 1-15: Traffic Generator Parameters Set in the example_top Module (Cont’d)

Parameter Parameter Description Parameter Value

http://www.xilinx.com

60 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

The command patterns instr_mode_i, addr_mode_i, bl_mode_i, and data_mode_i of the
traffic_gen module can each be set independently. The provided init_mem_pattern_ctr
module has interface signals that allow the user to modify the command pattern in real
time using the ChipScope analyzer virtual I/O (VIO).

This is the varying command pattern:

1. Set vio_modify_enable to 1.

2. Set vio_addr_mode_value to:

1: Fixed_address.

2: PRBS address.

3: Sequential address.

3. Set vio_bl_mode_value to:

1: Fixed bl.

2: PRBS bl. If bl_mode value is set to 2, the addr_mode value is forced to 2 to generate
the PRBS address.

4. Set vio_data_mode_value to:

0: Reserved.

1: FIXED data mode. Data comes from the fixed_data_i input bus.

2: DGEN_ADDR (default). The address is used as the data pattern.

3: DGEN_HAMMER. All 1s are on the DQ pins during the rising edge of DQS, and all
0s are on the DQ pins during the falling edge of DQS.

4: DGEN_NEIGHBOR. All 1s are on the DQ pins during the rising edge of DQS except
one pin. The address determines the exception pin location.

5: DGEN_WALKING1. Walking 1s are on the DQ pins. The starting position of 1
depends on the address value.

6: DGEN_WALKING0. Walking 0s are on the DQ pins. The starting position of 0
depends on the address value.

7: DGEN_PRBS. A 32-stage LFSR generates random data and is seeded by the starting
address.

ENFORCE_RD_WR_PATTERN 3-bit parameter that selects the
pattern used for the write operation

The parameter selects the pattern for memory
writes.

• 3'b000 - 'h5A5A_A5A5 pattern
• 3'b001 - PRBS pattern
• 3'b010 - Walking zeros
• 3'b011 - Walking ones
• 3'b100 - All ones
• 3'b101 - All zeros

C_EN_WRAP_TRANS Enable code for wrap transactions This parameter enables code to support the
wrap transactions.

C_AXI_NBURST_TEST Enable code for narrow bursts This parameter enables code that generates
narrow burst transactions on the AXI4 interface.

Table 1-15: Traffic Generator Parameters Set in the example_top Module (Cont’d)

Parameter Parameter Description Parameter Value

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 61
UG406 October 19, 2011

Getting Started with the CORE Generator Software

Modifying Port Address Space

The address space for a port can be easily modified by changing the BEGIN_ADDRESS
and END_ADDRESS parameters found in the top-level testbench file. These two values
must be set to align to the port data width. The two additional parameters,
PRBS_SADDR_MASK_POS and PRBS_EADDR_MASK_POS, are used in the default PRBS
address mode to ensure that out-of-range addresses are not sent to the port.
PRBS_SADDR_MASK_POS creates an OR mask that shifts PRBS-generated addresses
with values below BEGIN_ADDRESS up into the valid address space of the port.
PRBS_SADDR_MASK_POS should be set to a 32-bit value equal to the BEGIN_ADDRESS
parameter. PRBS_EADDR_MASK_POS creates an AND mask that shifts PRBS-generated
addresses with values above END_ADDRESS down into the valid address space of the
port. PRBS_EADDR_MASK_POS should be set to a 32-bit value, where all bits above the
most-significant address bit of END_ADDRESS are set to 1 and all remaining bits are set to
0. Table 1-16 shows some examples of setting the two mask parameters.

Table 1-16: Example Settings for Address Space and PRBS Masks

SADDR EADDR PRBS_SADDR_MASK_POS PRBS_EADDR_MASK_POS

0x1000 0xFFFF 0x00001000 0xFFFF0000

0x2000 0xFFFF 0x00002000 0xFFFF0000

0x3000 0xFFFF 0x00003000 0xFFFF0000

0x4000 0xFFFF 0x00004000 0xFFFF0000

0x5000 0xFFFF 0x00005000 0xFFFF0000

0x2000 0x1FFF 0x00002000 0xFFFFE000

0x2000 0x2FFF 0x00002000 0xFFFFD000

0x2000 0x3FFF 0x00002000 0xFFFFC000

0x2000 0x4FFF 0x00002000 0xFFFF8000

0x2000 0x5FFF 0x00002000 0xFFFF8000

0x2000 0x6FFF 0x00002000 0xFFFF8000

0x2000 0x7FFF 0x00002000 0xFFFF8000

0x2000 0x8FFF 0x00002000 0xFFFF0000

0x2000 0x9FFF 0x00002000 0xFFFF0000

0x2000 0xAFFF 0x00002000 0xFFFF0000

0x2000 0xBFFF 0x00002000 0xFFFF0000

0x2000 0xCFFF 0x00002000 0xFFFF0000

0x2000 0xDFFF 0x00002000 0xFFFF0000

0x2000 0xEFFF 0x00002000 0xFFFF0000

0x2000 0xFFFF 0x00002000 0xFFFF0000

http://www.xilinx.com

62 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

Traffic Generator Signal Description

Traffic generator signals are described in Table 1-17.

Table 1-17: Traffic Generator Signal Descriptions

Signal Name Direction Description

addr_mode_i[1:0] Input Valid settings for this signal are:

00: Block RAM address mode. The address comes from the
bram_cmd_i input bus.

01: FIXED address mode. The address comes from the fixed_addr_i
input bus.

10: PRBS address mode (Default). The address is generated from the
internal 32-bit LFSR circuit. The seed can be changed through the
cmd_seed input bus.

11: SEQUENTIAL address mode. The address is generated from the
internal address counter. The increment is determined by the User
Interface port width.

bl_mode_i[1:0] Input Valid settings for this signal are:

00: Block RAM burst mode. The burst length comes from the
bram_cmd_i input bus.

01: FIXED burst mode. The burst length comes from the
fixed_instr_i input bus.

10: PRBS burst mode (Default). The burst length is generated from
the internal 16-bit LFSR circuit. The seed can only be changed
through the parameter section.

bram_cmd_i[38:0] Input This bus contains the block RAM interface ports: {BL, INSTR,
ADDRESS}.

bram_rdy_o Output This block RAM interface output indicates when the traffic generator is
ready to accept input from bram_cmd_i bus.

bram_valid_i Input For the block RAM interface, the bram_cmd_i bus is accepted when
both bram_valid_i and bram_rdy_o are asserted.

clk_i Input This signal is the clock input.

cmd_seed_i[31:0] Input This bus is the seed for the command PRBS generator.

counts_rst Input When counts_rst is asserted, wr_data_counts and rd_data_counts are
reset to zero.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 63
UG406 October 19, 2011

Getting Started with the CORE Generator Software

data_mode_i[3:0] Input Valid settings for this signal are:

0000: Reserved.

0001: FIXED data mode. Data comes from the fixed_data_i input
bus.

0010: DGEN_ADDR (Default). The address is used as the data
pattern.

0011: DGEN_HAMMER. All 1s are on the DQ pins during the rising
edge of DQS, and all 0s are on the DQ pins during the falling edge of
DQS. This option is only valid if parameter
DATA_PATTERN = “DGEN_HAMMER” or “DGEN_ALL”.

0100: DGEN_NEIGHBOR. All 1s are on the DQ pins during the
rising edge of DQS except one pin. The address determines the
exception pin location. This option is only valid if parameter
DATA_PATTERN = “DGEN_ADDR” or “DGEN_ALL”.

0101: DGEN_WALKING1. Walking 1s are on the DQ pins. The
starting position of 1 depends on the address value. This option is
only valid if parameter DATA_PATTERN = “DGEN_WALKING” or
“DGEN_ALL”.

0110: DGEN_WALKING0. Walking 0s are on the DQ pins. The
starting position of 0 depends on the address value. This option is
only valid if parameter DATA_PATTERN = “DGEN_WALKING0”
or “DGEN_ALL”.

0111: DGEN_PRBS. A 32-stage LFSR generates random data and is
seeded by the starting address. This option is only valid if parameter
DATA_PATTERN = “DGEN_PRBS” or “DGEN_ALL”.

data_seed_i[31:0] Input This bus is the seed for the data PRBS generator.

end_addr_i[31:0] Input This bus defines the end-address boundary for the port address space.
The least-significant bits [3:0] are ignored.

error Output This signal is asserted when the readback data is not equal to the
expected value.

error_status[n:0] Output This signal latches these values when the error signal is asserted:

[31:0]: Read start address

[37:32]: Read burst length

[39:38]: Reserved

[40]: mcb_cmd_full

[41]: mcb_wr_full

[42]: mcb_rd_empty

[64 + (DWIDTH - 1):64]: expected_cmp_data

[64 + (2*DWIDTH - 1):64 + DWIDTH]: read_data

fixed_addr_i[31:0] Input This 32-bit input is the fixed address input bus.

fixed_bl_i[5:0] Input This 6-bit input is the fixed burst length input bus.

fixed_data_i[31:0] Input This 32-bit input is the fixed data input bus.

fixed_instr_i[2:0] Input This 3-bit input is the fixed instruction input bus.

Table 1-17: Traffic Generator Signal Descriptions (Cont’d)

Signal Name Direction Description

http://www.xilinx.com

64 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

instr_mode_i[3:0] Input Valid settings for this signal are:

0000: Block RAM instruction mode. The instruction comes from the
bram_cmd_i input bus.

0001: FIXED instruction mode. The instruction comes from the
fixed_instr_i input bus.

0010: W/R instruction mode (Default). This mode generates
pseudo-random WRITE and READ instruction sequences.

0011: WP/RP instruction mode. This mode generates
pseudo-random WRITE precharge and READ precharge instruction
sequences.

0100: W/WP/R/RP. This mode generates pseudo-random WRITE,
WRITE precharge, READ, and READ precharge instruction
sequences.

0101: W/WP/R/RP/RF. This mode generates pseudo-random
WRITE, WRITE precharge, READ, READ precharge, and REFRESH
instruction sequences.

mcb_cmd_addr_o[29:0] Output Memory controller block MIG DDR2/DDR3 standard user command
port interface.

mcb_cmd_bl_o[5:0] Output MIG DDR2/DDR3 standard user command port interface.

mcb_cmd_en_o Output MIG DDR2/DDR3 standard user command port interface.

mcb_cmd_full_i Input MIG DDR2/DDR3 standard user command port interface.

mcb_cmd_instr_[2:0] Output MIG DDR2/DDR3 standard user command port interface.

mcb_rd_data_i[DWIDTH-1:0] Input MIG DDR2/DDR3 standard user data port interface.

mcb_rd_empty_i Input MIG DDR2/DDR3 standard user data port interface.

mcb_rd_en_o Input MIG DDR2/DDR3 standard user data port interface.

mcb_wr_data_o[DWIDTH-1:0] Output MIG DDR2/DDR3 standard user write data port interface.

mcb_wr_en_o Output MIG DDR2/DDR3 standard user write data port interface.

mcb_wr_full_i Input MIG DDR2/DDR3 standard user write data port interface.

mode_load_i Input When this signal is asserted (High), the values in addr_mode_i,
instr_mode_i, bl_mode_i, and data_mode_i are latched and the next
traffic pattern is based on the new settings.

rd_data_counts[47:0] Output The value of this bus is incremented when data is read from the MIG
DDR2/DDR3 standard user read data port.

rst_i Input This signal is the reset input.

run_traffic_i Input When this signal is asserted (High), the traffic generator starts
generating command and data patterns. This signal should be only be
asserted when mode_load_i is not asserted.

start_addr_i[31:0] Input This input defines the start address boundary for the port address
space. The least-significant bits [3:0] are ignored.

wr_data_counts[47:0] Output The value of this output is incremented when data is sent to the MIG
DDR2/DDR3 standard user write data port.

Notes:
1. The block RAM bus interface in the traffic generator is only supported in the Spartan®-6 FPGA environment.

Table 1-17: Traffic Generator Signal Descriptions (Cont’d)

Signal Name Direction Description

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 65
UG406 October 19, 2011

Getting Started with the CORE Generator Software

The AXI4 traffic generator signals are the standard signals supported by the AXI4 protocol
except for the additional signals mentioned in Verifying the Simulation Using the Example
Design (for Designs with the Standard User Interface), page 153l

Memory Initialization and Traffic Test Flow

After power up, the Init Memory Control block directs the traffic generator to initialize the
memory with the selected data pattern through the memory initialization procedure.

Memory Initialization

1. The data_mode_i input is set to select the data pattern (for example, data_mode_i[3:0]
= 0010 for the address as the data pattern).

2. The start_addr_i input is set to define the lower address boundary.

3. The end_addr_i input is set to define the upper address boundary.

4. bl_mode_i is set to 01 to get the burst length from the fixed_bl_i input.

5. The fixed_bl_i input is set to either 16 or 32.

6. instr_mode_i is set to 0001 to get the instruction from the fixed_instr_i input.

7. The fixed_instr_i input is set to the “WR” command value of the memory device.

8. addr_mode_i is set to 11 for the sequential address mode to fill up the memory space.

9. mode_load_i is asserted for one clock cycle.

When the memory space is initialized with the selected data pattern, the Init Memory
Control block instructs the traffic generator to begin running traffic through the traffic test
flow procedure (by default, the addr_mode_i, instr_mode_i, and bl_mode_i inputs are set
to select PRBS mode).

Traffic Test Flow

1. The addr_mode_i input is set to the desired mode (PRBS is the default).

2. The cmd_seed_i and data_seed_i input values are set for the internal PRBS generator.
This step is not required for other patterns.

3. The instr_mode_i input is set to the desired mode (PRBS is the default).

4. The bl_mode_i input is set to the desired mode (PRBS is the default).

5. The data_mode_i input should have the same value as in the memory pattern
initialization stage detailed in Memory Initialization.

6. The run_traffic_i input is asserted to start running traffic.

7. If an error occurs during testing (for example, the read data does not match the
expected data), the error bit is set until reset is applied.

8. Upon receiving an error, the error_status bus latches the values defined in Table 1-17,
page 62.

With some modifications, the example design can be changed to allow addr_mode_i,
instr_mode_i, and bl_mode_i to be changed dynamically when run_traffic_i is deasserted.
However, after changing the setting, the memory initialization steps need to be repeated to
ensure that the proper pattern is loaded into the memory space.

Note: When the data mask option is disabled, the simulation test bench always ties the memory
model data mask bit(s) to zero for proper operation.

http://www.xilinx.com

66 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

Setting up for Simulation

The Xilinx UNISIM library must be mapped into the simulator. The testbench provided
with the example design supports these pre-implementation simulations:

• The testbench, along with vendor’s memory model used in the example design

• The RTL files of the memory controller and the PHY core, created by the MIG tool

To run the simulation, go to this directory:

<project_dir>/<component_name>/sim

ModelSim is the only supported simulation tool. The simple testbench can be run using
ModelSim by executing the sim.do script.

Getting Started with EDK
EDK provides an alternative package to the RTL created by the MIG tool in the
CORE Generator software. The IP catalog in XPS contains the IP core axi_v6_ddrx with
the same RTL that is provided by the MIG tool. The difference is that the RTL is packaged
as an EDK pcore suitable for use in embedded processor based systems. The
axi_v6_ddrx pcore only provides an AXI4 slave interface to either DDR2 SDRAM or
DDR3 SDRAM in Verilog.

The simplest way to get started with the axi_v6_ddrx memory controller is to use the
base system builder (BSB) wizard in XPS. The BSB guides the user through a series of
options to provide an entire embedded project with an optional axi_v6_ddrx memory
controller. If the memory controller is selected, an already configured, connected, and
tested axi_v6_ddrx controller is provided for a particular reference board such as the
ML605 board. For more information regarding BSB, refer to chapter 2 of EDK Concepts,
Tools, and Techniques. [Ref 2]

When starting with a new project, the axi_v6_ddrx IP can be added to the design by
dragging the memory controller into the project from the IP catalog. The axi_v6_ddrx IP
is configured using the same MIG tool used in the CORE Generator software and therefore
the GUI flow is as described in Getting Started with the CORE Generator Software,
page 13. The MIG tool is launched from EDK by double-clicking the axi_v6_ddrx instance,
or right-clicking Configure IP.... However, instead of generating the RTL top-level
wrappers with the parameters already set, the MIG tool sets the parameters for the RTL in
the XPS MHS file and in a MIG .prj file. From the parameters in the MHS along with the
MIG .prj file, the pcore can generate the correct constraints and parameter values for
itself during the XPS Platform Generator (Platgen) tool. Multiple axi_v6_ddrx cores in a
single design can be accomplished by running the MIG GUI for each core, choosing
separate I/O banks for each controller.

EDK Clocking
Because the pcore is only a component in the system, the clock/reset structure must also be
configured in XPS and is not automatically generated, as in the RTL in the
CORE Generator tool. Clocking is described in Clocking Architecture, page 106. These
clocking signals are used:

• clk_mem: 1x memory clock

• clk_rd_base: 1x memory clock with fine phase shift enabled. No global clock buffers
can be used.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 67
UG406 October 19, 2011

Getting Started with EDK

• clk_ref: IDELAYCTRL reference clock, usually 200 MHz (300 MHz can be used in
some designs).

• clk: 0.5x memory clock. Also connect to MMCM PSCLK.

• PD_PSEN: Connect to MMCM PSEN port.

• PD_PSINCDEC: Connect to MMCM PSINCDEC port.

• PD_PSDONE: Connect to MMCM PSDONE port.

An example portion of an EDK clock generator instantiation follows, with associated
axi_v6_ddrx port connections:

BEGIN clock_generator
 PARAMETER INSTANCE = clock_generator_0
 PARAMETER C_CLKIN_FREQ = 200000000
 PARAMETER C_CLKOUT0_FREQ = 200000000
 PARAMETER C_CLKOUT0_GROUP = MMCM0
 PARAMETER C_CLKOUT1_FREQ = 400000000
 PARAMETER C_CLKOUT1_GROUP = MMCM0
 PARAMETER C_CLKOUT2_FREQ = 400000000
 PARAMETER C_CLKOUT2_GROUP = MMCM0
 PARAMETER C_CLKOUT2_BUF = FALSE
 PARAMETER C_CLKOUT2_VARIABLE_PHASE = TRUE
 PORT CLKOUT0 = clk_clk_ref_psclk
 PORT CLKOUT1 = clk_mem
 PORT CLKOUT2 = clk_rd_base
 PORT PSCLK = clk_clk_ref_psclk
 PORT PSEN = PD_PSEN
 PORT PSINCDEC = PD_PSINCDEC
 PORT PSDONE = PD_PSDONE
END

Similar settings can be used to parameterize a CORE Generator™ tool Clocking Wizard
core. For the clk_rd_base clock only, this includes choosing Dynamic phase shift,
selecting a No buffer Drives setting, and checking Use Fine Ps.

After the IP is configured and the ports are connected, XPS is used to perform all other
aspects of IP management, including generating a bitstream and running simulations. In
general, parameters described in this document for the memory controller can be
converted to the EDK syntax. This requires all parameters to be upper case and prefixed
with “C_.” For example, behavioral simulation run time can be improved by adding this
MHS parameter to the axi_v6_ddrx instantiation:

PARAMETER C_BYPASS_INIT_CAL = FAST

AXI4 Interface Connection
After connecting clocks, the slave AXI4 interface is typically connected to an AXI
Interconnect core in the Bus Interfaces tab of the XPS System Assembly view. If ECC is
enabled (C_ECC == “ON”), an additional AXI4-Lite interface is available to access the ECC
Control/Status registers. The primary AXI4 interface is called S_AXI, and the AXI4-Lite
interface is called S_AXI_CTRL.

To close timing of the AXI4 interface, it might be necessary to enable register slices from
either the MIG tool or the AXI Interconnect GUI.

Note: The native AXI4 interface width is 4x the width of the memory width.

http://www.xilinx.com

68 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

External Ports
The external memory signals can be brought out of the EDK system in the Ports tab of the
XPS System Assembly view by choosing Make Ports External for the (BUS_IF) M_AXI
interface collection.

AXI Address
The base and high address range definitions that the memory controller responds to can be
set in the Addresses tab of the System Assembly view.

For more information about EDK and XPS, refer to EDK Concepts, Tools, and Techniques
[Ref 2] and the Embedded System Tools Reference manual [Ref 3].

Simulation Considerations
To simulate a design using axi_v6_ddrx, the user must create a testbench that connects a
memory model to the axi_v6_ddrx I/O signals. This is generally performed by editing the
system_tb.v/.vhd testbench template file created by the Simgen tool in XPS to add a
memory model. Alternatively, users can transfer the simulator compile commands from
Simgen into their own custom simulation/testbench environment.

Note: axi_v6_ddrx does not generally support structural simulation because it is not a supported
flow for the underlying MIG PHYs. Thus structural simulation is not recommended.

axi_v6_ddrx simulation should be performed in the behavioral/functional level and
requires a simulator capable of mixed-mode Verilog and VHDL language support.

It might be necessary for the testbench to place weak pull-down resistors on all DQ and
DQS signals so that the calibration logic can resolve logic values under simulation.
Otherwise, “X” propagation of input data might cause simulation of the calibration logic to
fail.

For behavioral simulation, the clk and clk_mem ports of axi_v6_ddrx must also be
completely phase-aligned.

Core Architecture
This section describes the architecture of the Virtex-6 FPGA memory interface solutions
core, providing an overview of the core modules and interfaces.

Overview
The Virtex-6 FPGA memory interface solutions core is shown in Figure 1-45.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 69
UG406 October 19, 2011

Core Architecture

User Design

The user design block shown in Figure 1-45 is any FPGA design that requires to be
connected to an external DDR2 or DDR3 SDRAM. The user design connects to the memory
controller via the user interface. An example user design is provided with the core.

AXI4 Slave Interface Block

The AXI4 slave interface maps AXI4 transactions to the UI to provide an industry-standard
bus protocol interface to the memory controller.

User Interface Block and User Interface

The UI block presents the UI to the user design block. It provides a simple alternative to the
native interface by presenting a flat address space and buffering read and write data.

Memory Controller and Native Interface

The front end of the memory controller (MC) presents the native interface to the UI block.
The native interface allows the user design to submit memory read and write requests and
provides the mechanism to move data from the user design to the external memory device,
and vice versa. The back end of the MC connects to the physical interface and handles all
the interface requirements to that module. The MC also provides a reordering option that
reorders received requests to optimize data throughput and latency.

X-Ref Target - Figure 1-45

Figure 1-45: Virtex-6 FPGA Memory Interface Solution

UG406_c1_42_031610

rst

clk

app_addr

app_cmd

app_en

app_hi_pri

app_sz

app_wdf_data

app_wdf_end

app_wdf_mask

app_wdf_wren

app_rdy

app_rd_data

app_rd_data_end

app_rd_data_valid

app_wdf_rdy

ddr_ad dr

ddr_ba

ddr_cas_n

ddr_ck_p

ddr_cke

ddr_cs_n

ddr_dm

ddr_o dt

ddr_ra s_n

ddr_reset_n

ddr we n

ddr_dq

ddr_dqs_n

ddr_dqs_p

User
Interface

Block

Memory
Controller

Physical
Layer

User
Design

DDR2/DDR3
SDRAM

IOB

Virtex-6 FPGA Memory Interface SolutionUser Interface Physical Interface

Virtex-6 FPGA

Native Interface DFI Interface

http://www.xilinx.com

70 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

PHY and the Physical Interface

The front end of the PHY connects to the MC. The back end of the PHY connects to the
external memory device. The PHY handles all memory device signal sequencing and
timing.

IDELAYCTRL

An IDELAYCTRL is required in any bank that uses IODELAYs. IODELAYs are associated
with the data group, the capture clocks, and the resynchronization (BUFR-rsync) clocks.
Any bank/clock region that uses these signals require an IDELAYCTRL.

The MIG tool instantiates one IODELAYCTRL and then uses the IODELAY_GROUP
attribute (see the iodelay_ctrl.v/.vhd module). Based on this attribute, the ISE tool
properly replicates IODELAYCTRLs as needed within the design.

The IDELAYCTRL reference frequency varies based on the selected design frequency. If the
selected design frequency is 480 MHz and above, the IDELAYCTRL reference clock
frequency is 300 MHz, otherwise it is 200 MHz. If multi-controller designs (for example,
DDR3 SDRAM multi-controller designs or combinations of DDR3 SDRAM and QDRII
controllers) are generated such that one of the controller frequencies is 480 MHz and above
and the other controller frequency is below 480 MHz, then IDELAYCTRLs with reference
frequencies of both 200 MHz and 300 MHz are generated. When the MIG tool generates a
multi-controller design, the MIG tool only instantiates one IODELAYCTRL with this
primitive if only one of the 200 MHz or 300 MHz IODELAYCTRLs is required and allows
the tools to replicate. If the design is generated such that both 200 MHz and 300 MHz
IODELACYCTRLs are required, the MIG tool instantiates two IODELAYCTRLs with
primitives and passes the IODELAY_GROUP parameters accordingly. The MIG tool
generates the design such that all 200 MHz IODELAY elements and IODELAYCTRLs use
the IODELAY_GROUP parameter value of IODELAY200_MIG, and all 300 MHz
IODELAYCTRLs and IODELAYs use the IODELAY_GROUP parameter value of
IODELAY300_MIG. Based on the IODELAY_GROUP attribute that is set, the ISE tool
replicates the IODELAYCTRLs for each region where the IODELAY blocks exist. When a
user creates a multi-controller design on their own (for example, DDR2 SDRAM because it
is not supported through the GUI), each MIG output has the component instantiated with
the primitive. This violates the rules for IODELAYCTRLs and the usage of the
IODELAY_GRP attribute. IODELAYCTRLs need to have only one instantiation of the
component with the attribute set properly, and allow the tools to replicate as needed.

User Interface
The UI is shown in Table 1-18 and connects to an FPGA user design to allow access to an
external memory device.

Table 1-18: User Interface

Signal Direction Description

app_addr[ADDR_WIDTH – 1:0] Input This input indicates the address for the
current request.

app_cmd[2:0] Input This input selects the command for the
current request.

app_en Input This is the active-High strobe for the
app_addr[], app_cmd[2:0], app_sz, and
app_hi_pri inputs.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 71
UG406 October 19, 2011

Core Architecture

app_rdy Output This output indicates that the UI is ready to
accept commands. If the signal is
deasserted when app_en is enabled, the
current app_cmd and app_addr must be
retried until app_rdy is asserted.

app_hi_pri Input This active-High input elevates the priority
of the current request.

app_rd_data
[APP_DATA_WIDTH – 1:0]

Output This provides the output data from read
commands.

app_rd_data_end Output This active-High output indicates that the
current clock cycle is the last cycle of
output data on app_rd_data[].

app_rd_data_valid Output This active-High output indicates that
app_rd_data[] is valid.

app_sz (1) Input For DDR3 SDRAM, app_sz can be changed
dynamically if BURST_MODE is set to
OTF.

app_wdf_data
[APP_DATA_WIDTH – 1:0]

Input This provides the data for write
commands.

app_wdf_end Input This active-High input indicates that the
current clock cycle is the last cycle of input
data on app_wdf_data[].

app_wdf_mask
[APP_MASK_WIDTH – 1:0]

Input This provides the mask for
app_wdf_data[].

app_wdf_rdy Output This output indicates that the write data
FIFO is ready to receive data. Write data is
accepted when app_wdf_rdy = 1’b1 and
app_wdf_wren = 1’b1.

app_wdf_wren Input This is the active-High strobe for
app_wdf_data[].

app_correct_en Input This active-High signal is used to correct
the data bits when there are data bit errors.
This input is valid when ECC is enabled in
the GUI; this corrects single bit errors only.
The MIG tool always sets this signal to 1 in
the RTL code.

clk Input This UI clock must be half of the DRAM
clock.

clk_mem Input This is a full-frequency memory clock.

clk_rd_base Input This clock input from the MMCM goes to
BUFR to become the rsync clock and to the
BUFIOs to become the capture clock on a
per-byte basis. This is a full-frequency
clock.

Table 1-18: User Interface (Cont’d)

Signal Direction Description

http://www.xilinx.com

72 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

app_addr[ADDR_WIDTH – 1:0]

This input indicates the address for the request currently being submitted to the UI. The UI
aggregates all the address fields of the external SDRAM and presents a flat address space
to the user.

app_cmd[2:0]

This input specifies the command for the request currently being submitted to the UI. The
available commands are shown in Table 1-19.

app_en

This input strobes in a request. The user must apply the desired values to app_addr[],
app_cmd[2:0], app_sz, and app_hi_pri, and then assert app_en to submit the request to the
UI. This initiates a handshake that the UI acknowledges by asserting app_rdy.

app_hi_pri

This input indicates that the current request is a high priority.

phy_init_done Output The PHY asserts phy_init_done when
calibration is finished.

app_ecc_multiple_err[3:0](1) Output This signal is applicable when ECC is
enabled and is valid along with
app_rd_data_valid. The
app_ecc_multiple_err[3:0] signal is
non-zero if the read data from the external
memory has two bit errors per beat of the
read burst. The SECDED algorithm does
not correct the corresponding read data
and puts a non-zero value on this signal to
notify the corrupted read data at the UI.

rst Input This is the active-High UI reset.

Notes:
1. This signal is brought up to the user design top module for BURST_MODE of OTF. For other

configurations, this port resides in the memc_ui_top module level only. The value of app_sz is don’t
care for BC4 and BL8 configurations.

2. This signal is brought up to the memc_ui_top module level only. This signal should only be used
when ECC is enabled.

Table 1-18: User Interface (Cont’d)

Signal Direction Description

Table 1-19: Commands for app_cmd[2:0]

Operation app_cmd[2:0] Code

Read 001

Write 000

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 73
UG406 October 19, 2011

Core Architecture

app_sz

For DDR3 SDRAM, app_sz can be changed dynamically if BURST_MODE is set to OTF.
The app_sz signal specifies the burst length. For BC4, this bit should be set to 0. For BL8,
this bit should be set to 1.

app_wdf_data[APP_DATA_WIDTH – 1:0]

This bus provides the data currently being written to the external memory.

app_wdf_end

This input indicates that the data on the app_wdf_data[] bus in the current cycle is the last
data for the current request.

app_wdf_mask[APP_MASK_WIDTH – 1:0]

This bus indicates which bits of app_wdf_data[] are written to the external memory and
which bits remain in their current state.

app_wdf_wren

This input indicates that the data on the app_wdf_data[] bus is valid.

app_rdy

This output indicates to the user whether the request currently being submitted to the UI is
accepted. If the UI does not assert this signal after app_en is asserted, the current request
must be retried. The app_rdy output is not asserted if:

• PHY/Memory initialization is not yet completed

• All the bank machines are occupied (can be viewed as the command buffer being
full)

- A read is requested and the read buffer is full

- A write is requested and no write buffer pointers are available

• A periodic read is being inserted

app_rd_data[APP_DATA_WIDTH – 1:0]

This output contains the data read from the external memory.

app_rd_data_end

This output indicates that the data on the app_rd_data[] bus in the current cycle is the last
data for the current request.

app_rd_data_valid

This output indicates that the data on the app_rd_data[] bus is valid.

app_wdf_rdy

This output indicates that the write data FIFO is ready to receive data. Write data is
accepted when both app_wdf_rdy and app_wdf_wren are asserted.

http://www.xilinx.com

74 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

rst

This is the reset input for the UI.

clk

This is the input clock for the UI. It must be half the frequency of the clock going out to the
external SDRAM.

clk_mem

This is a full-frequency clock provided from the MMCM and should only be used as an
input to the OSERDES.

clk_rd_base

One copy of full-frequency clk_rd_base is routed to the individual capture clock networks
for each DQS group; the phase of each of these individual DQS clocks is then adjusted
during read leveling via an IODELAY to position the capture clock in the middle of the
read data eye. The phase of clk_rd_base relative to clk_mem (used to drive the forwarded
clock to the memory) is phase adjusted via the fine-phase shift feature of the MMCM by the
phase detector logic to account for ongoing delay variations in the read capture path due to
voltage and temperature changes.

phy_init_done

The PHY asserts phy_init_done when calibration is finished. The application has no need
to wait for phy_init_done before sending commands to the memory controller.

AXI4 Slave Interface Block
The AXI4 slave interface block maps AXI4 transactions to the UI interface to provide an
industry-standard bus protocol interface to the memory controller. The AXI4 slave
interface is optional in designs provided through the MIG tool. The AXI4 slave interface is
required with the axi_v6_ddrx memory controller provided in EDK. The RTL is consistent
between both tools. For details on the AXI4 signaling protocol, see the ARM AMBA
specifications. [Ref 1]

The overall design is composed of separate blocks to handle each AXI channel, which
allows for independent read and write transactions. Read and write commands to the UI
rely on a read priority arbitration scheme explained in Arbitration in the AXI Shim,
page 77 to handle simultaneous requests. The address read/address write modules are
responsible for chopping the AXI4 burst/wrap requests into smaller memory size burst
lengths of either four or eight, and also conveying the smaller burst lengths to the
read/write data modules so they can interact with the user interface.

If ECC is enabled, all write commands are issued as a read-modify-write operation. If an
uncorrectable ECC error occurs, the read data is returned with the SLVERR flag. An
uncorrectable read error during a read-modify-write operation does not signal an error on
the BRESP.

AXI4 Slave Interface Parameters

Table 1-20 lists the AXI4 slave interface parameters.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 75
UG406 October 19, 2011

Core Architecture

Table 1-20: AXI4 Slave Interface Parameters

Parameter Name
Default
Value

Allowable
Values

Description

C_S_AXI_ADDR_WIDTH 32 32, 64 This is the width of address read and address
write signals. EDK designs are limited to 32.

C_S_AXI_DATA_WIDTH 32 32, 64, 128, 256 This is the width of data signals. The
recommended width is 4x the memory data
width. The width can be smaller, but not
greater than 4x the memory data width.

C_S_AXI_ID_WIDTH 4 1–16 This is the width of ID signals for every
channel. This value is automatically computed
in EDK designs.

C_S_AXI_SUPPORTS_NARROW_BURST 1 0, 1 This parameter adds logic blocks to support
narrow AXI transfers. It is required if any
master connected to the memory controller
issues narrow bursts. This parameter is
automatically set if the AXI data width is
smaller than the recommended value.

C_S_AXI_BASEADDR N/A Valid address This parameter specifies the base address for
the memory mapped slave interface. Address
requests at this address map to rank 1, bank 0,
row 0, column 0. The base/high address
together define the accessible size of the
memory. This accessible size must be a power
of 2. Additionally, the base/high address pair
must be aligned to a multiple of the accessible
size. The minimum accessible size is
4096 bytes.

C_S_AXI_HIGHADDR N/A Valid address This parameter specifies the high address for
the memory mapped slave interface. Address
requests received above this value wrap back
to the base address. The base/high address
together define the accessible size of the
memory. This accessible size must be a power
of 2. Additionally, the base/high address pair
must be aligned to a multiple of the accessible
size. The minimum accessible size is
4096 bytes.

C_S_AXI_PROTOCOL AXI4 AXI4 This parameter specifies the AXI protocol
(EDK metadata parameter only).

http://www.xilinx.com

76 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

AXI4 Slave Interface Signals

Table 1-21 lists the AXI4 slave interface specific signal. Clock/reset to the interface is
provided from the memory controller.

Table 1-21: AXI4 Slave Interface Signals

Name Width Direction Active State Description

clk 1 Input Input clock to the core.

reset 1 Input High Input reset to the core.

s_axi_awid C_AXI_ID_WIDTH Input Write address ID.

s_axi_awaddr C_AXI_ADDR_WIDTH Input Write address.

s_axi_awlen 8 Input Burst length. The burst length gives the
exact number of transfers in a burst.

s_axi_awsize 3 Input Burst size. This signal indicates the size
of each transfer in the burst.

s_axi_awburst 2 Input Burst type.

s_axi_awlock 1 Input Lock type. (This is not used in the
current implementation.)

s_axi_awcache 4 Input Cache type. (This is not used in the
current implementation.)

s_axi_awprot 3 Input Protection type. (Not used in the
current implementation.)

s_axi_awvalid 1 Input High Write address valid. This signal
indicates that valid write address and
control information are available.

s_axi_awready 1 Output High Write address ready. This signal
indicates that the slave is ready to
accept an address and associated
control signals.

s_axi_wdata C_AXI_DATA_WIDTH Input Write data.

s_axi_wstrb C_AXI_DATA_WIDTH/8 Input Write strobes.

s_axi_wlast 1 Input High Write last. This signal indicates the last
transfer in a write burst.

s_axi_wvalid 1 Input High Write valid. This signal indicates that
write data and strobe are available.

s_axi_wready 1 Output High Write ready.

s_axi_bid C_AXI_ID_WIDTH Output Response ID. The identification tag of
the write response.

s_axi_bresp 2 Output Write response. This signal indicates
the status of the write response.

s_axi_bvalid 1 Output High Write response valid.

s_axi_bready 1 Input High Response ready.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 77
UG406 October 19, 2011

Core Architecture

Arbitration in the AXI Shim

The AXI4 protocol calls for independent read and write address channels. The memory
controller has one address channel, and the following arbitration options are available for
arbitrating between the read and write address channels.

Time Division Multiplexing (TDM)

Equal priority is given to read and write address channels in this mode. The grant to the
read and write address channels alternates every clock cycle. The read or write request
from the AXI master has no bearing on the grants.

Round Robin

Equal priority is given to read and write address channels in this mode. The grant to the
read and write channels depends on the requests from the AXI master. The grant to the
read and write address channels alternates every clock cycle provided there is a
corresponding request from the AXI master for the address channel. In a given time slot, if
the corresponding address channel does not have a request, the grant is given to the other
address channel with the pending request.

s_axi_arid C_AXI_ID_WIDTH Input Read address ID.

s_axi_araddr C_AXI_ADDR_WIDTH Input Read address.

s_axi_arlen 8 Input Read burst length.

s_axi_arsize 3 Input Read burst size.

s_axi_arburst 2 Input Read burst type.

s_axi_arlock 1 Input Lock type. (This is not used in the
current implementation.)

s_axi_arcache 4 Input Cache type. (This is not used in the
current implementation.)

s_axi_arprot 3 Input Protection type. (This is not used in the
current implementation.)

s_axi_arvalid 1 Input High Read address valid.

s_axi_arready 1 Output High Read address ready.

s_axi_rid C_AXI_ID_WIDTH Output Read ID tag.

s_axi_rdata C_AXI_DATA_WIDTH Output Read data.

s_axi_rresp 2 Output Read response.

s_axi_rlast 1 Output Read last.

s_axi_rvalid 1 Output Read valid.

s_axi_rready 1 Input Read ready.

Table 1-21: AXI4 Slave Interface Signals (Cont’d)

Name Width Direction Active State Description

http://www.xilinx.com

78 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

Read Priority

The read address channel is always given priority in this mode. The requests from the
write address channel are processed when there are no pending requests from the read
address channel.

Read Priority with Starve Limit

The read address channel is always given priority in this mode. The requests from the
write address channel are processed when there are no pending requests from the read
address channel or the starve limit for read is reached.

Write Priority

The write address channel is always given priority in this mode. The requests from the
read address channel are processed when there are no pending requests from the read
address channel.

AXI4-Lite Slave Control/Status Register Interface Block
The AXI4-Lite Slave Control Register block provides a processor accessible interface to the
ECC memory option. The interface is available when ECC is enabled and the primary slave
interface is AXI4. The block provides interrupts, interrupt enable, ECC status, ECC
enable/disable, ECC correctable errors counter, first failing correctable/uncorrectable
data, ECC and address. Fault injection registers for software testing is provided when the
ECC_TEST_FI_XOR (C_ECC_TEST) parameter is “ON”. The AXI4-Lite interface is fixed at
32 data bits and signaling follows the standard AMBA AXI4-Lite specifications [Ref 1].

The AXI4-Lite control/status register interface block is implemented in parallel to the
AXI4 full memory-mapped interface. The block monitors the output of the native interface
to capture correctable (single bit) and uncorrectable (multiple bit) errors. When a
correctable and/or uncorrectable error occurs, the interface also captures the byte address
of the failure along with the failing data bits and ECC bits. Fault injection is provided by an
XOR block placed in the write datapath after the ECC encoding has occurred. Only the first
memory beat in a transaction can have errors inserted. For example, in a memory
configuration with a data width of 72 and a mode register set to burst length 8, only the
first 72 bits are corruptible through the fault injection interface. Interrupt generation based
on either a correctable or uncorrectable error can be independently configured with the
register interface.

ECC Enable/Disable

The ECC_ON_OFF register enables/disables the ECC decode functionality. However,
encoding is always enabled. The default value at start-up can be parameterized with
C_ECC_ONOFF_RESET_VALUE. Assigning a value of 1 for the ECC_ON_OFF bit of this
register results in the correct_en signal input into the mem_intfc to be asserted. Writing a
value of 0 to the ECC_ON_OFF bit of this register results in the correct_en signal to be
deasserted. When correct_en is asserted, decoding is enabled, and the opposite is true
when this signal is deasserted. ECC_STATUS/ECC_CE_CNT are not updated when
ECC_ON_OFF = 0. The FI_D0, FI_D1, FI_D2, and FI_D3 registers are not writable when
ECC_ON_OFF = 0.

Single Error and Double Error Reporting

Two vectored signals from the memory controller indicate an ECC error: ecc_single and
ecc_multiple. The ecc_single signal indicates if there has been a correctable error, and the

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 79
UG406 October 19, 2011

Core Architecture

ecc_multiple signal indicates if there has been an uncorrectable error. The widths of
ecc_multiple and ecc_single are based on the C_NCK_PER_CLK parameter. There can be
between 0 and C_NCK_PER_CLK * 2 errors per cycle with each data beat signaled by one
of the vector bits. Multiple bits of the vector can be signaled per cycle indicating that
multiple correctable errors or multiple uncorrectable errors have been detected. The
ecc_err_addr signal (discussed in Fault Collection) is valid during the assertion of either
ecc_single or ecc_multiple.

The ECC_STATUS register sets the CE_STATUS bit and/or UE_STATUS bit for correctable
error detection and uncorrectable error detection, respectively.

Interrupt Generation

When interrupts are enabled with the CE_EN_IRQ and/or UE_EN_IRQ bits of the
ECC_EN_IRQ register, if a correctable error or uncorrectable error occurs, the interrupt
signal is asserted.

Fault Collection

To aid the analysis of ECC errors, there are two banks of storage registers that collect
information on the failing ECC decode. One bank of registers is for correctable errors, and
another bank is for uncorrectable errors. The failing address, undecoded data, and ECC
bits are saved into these register banks as CE_FFA, CE_FFD, and CE_FFE for correctable
errors, and UE_FFA, UE_FFD, and UE_FFE for uncorrectable errors. The data in
combination with the ECC bits can help determine which bit(s) have failed. CE_FFA stores
the address from the ecc_err_addr signal and converts it to a byte address. Upon error
detection, the data is latched into the appropriate register. Only the first data beat with an
error is stored.

When a correctable error occurs, there is also a counter that counts the number of
correctable errors that have occurred. The counter can be read from the CE_CNT register
and is fixed as an 8-bit counter; it does not rollover when the maximum value is
incremented.

Fault Injection

The ECC fault injection register, FI_D and FI_ECC, facilitates testing of the software
drivers. When set, the ECC fault injection register XORs with the MIG DFI datapath to
simulate errors in the memory. The DFI interface lies between the Memory Controller and
the PHY. It is ideal for injection at this point because this is after the encoding has been
completed. There is only support to insert errors on the first data beat, therefore there are
two to four FI_D registers to accommodate this. During operation, after the error has been
inserted into the datapath, the register clears itself.

AXI4-Lite Slave Control/Status Register Interface Parameters

Table 1-22 lists the AXI4-Lite slave interface parameters.

Table 1-22: AXI4-Lite Slave Control/Status Register Parameters

Parameter Name
Default
Value

Allowable
Values

Description

C_S_AXI_CTRL_ADDR_WIDTH 32 32,64 This is the width of the AXI4-Lite address buses.
EDK designs are limited to 32.

C_S_AXI_CTRL_DATA_WIDTH 32 32 This is the width of the AXI4-Lite data buses.

C_ECC_ONOFF_RESET_VALUE 1 0,1 Controls ECC on/off value at start-up/reset.

http://www.xilinx.com

80 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

AXI4-Lite Slave Control/Status Register Interface Signals

Table 1-23 lists the AXI4 slave interface specific signals. Clock/reset to the interface is
provided from the memory controller.

C_S_AXI_CTRL_BASEADDR N/A Valid Address This parameter specifies the base address for the
AXI4-Lite slave interface.

C_S_AXI_CTRL_HIGHADDR N/A Valid Address This parameter specifies the high address for the
AXI4-Lite slave interface.

C_S_AXI_CTRL_PROTOCOL AXI4LITE AXI4LITE AXI4-Lite protocol (EDK metadata parameter.)

Table 1-22: AXI4-Lite Slave Control/Status Register Parameters (Cont’d)

Parameter Name
Default
Value

Allowable
Values

Description

Table 1-23: List of New I/O Signals

Name Width Direction
Active
State

Description

s_axi_ctrl_awaddr
C_S_AXI_CTRL_
ADDR_WIDTH

Input
Write address.

s_axi_ctrl_awvalid 1 Input High

Write address valid. This
signal indicates that
valid write address and
control information are
available.

s_axi_ctrl_awready 1 Output High

Write address ready.
This signal indicates that
the slave is ready to
accept an address and
associated control
signals.

s_axi_ctrl_wdata
C_S_AXI_CTRL_
DATA_WIDTH

Input
Write data

s_axi_ctrl_wvalid 1 Input High
Write valid. This signal
indicates that write data
and strobe are available.

s_axi_ctrl_wready 1 Output High Write ready.

s_axi_ctrl_bvalid Output High Write response valid.

s_axi_ctrl_bready 1 Input High Response ready.

s_axi_ctrl_araddr
C_S_AXI_CTRL_
ADDR_WIDTH Input

Read address.

s_axi_ctrl_arvalid 1 Input High Read address valid.

s_axi_ctrl_arready 1 Output High Read address ready.

s_axi_ctrl_rdata
C_S_AXI_CTRL_
DATA_WIDTH

Output
Read data.

s_axi_ctrl_rvalid 1 Output Read valid.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 81
UG406 October 19, 2011

Core Architecture

AXI4-Lite Slave Control/Status Register Map

ECC register map is shown in Table 1-24. The register map is little endian. Write accesses to
read-only or reserved values are ignored. Read accesses to write-only or reserved values
return the value 0xDEADDEAD.

s_axi_ctrl_rready 1 Input Read ready.

interrupt 1 Output High
IP Global Interrupt
signal

Table 1-23: List of New I/O Signals (Cont’d)

Name Width Direction
Active
State

Description

Table 1-24: ECC Control Register Map

Address Offset Register Name
Access

Type
Default
Value

Description

0x00 ECC_STATUS R/W 0x0 ECC Status Register

0x04 ECC_EN_IRQ R/W 0x0
ECC Enable Interrupt
Register

0x08 ECC_ON_OFF R/W 0x0 or 0x1

ECC On/Off Register. If
C_ECC_ONOFF_RESET_
VALUE = 1, the default
value is 0x1.

0x0C CE_CNT R/W 0x0
Correctable Error Count
Register

(0x10-0x9C) Reserved

0x100 CE_FFD[31:00] R 0x0
Correctable Error First
Failing Data Register.

0x104 CE_FFD[63:32] R 0x0
Correctable Error First
Failing Data Register.

0x108 CE_FFD[95:64](1) R 0x0
Correctable Error First
Failing Data Register.

0x10C CE_FFD [127:96](1) R 0x0
Correctable Error First
Failing Data Register.

(0x110 - 0x17C) Reserved

0x180 CE_FFE R 0x0
Correctable Error First
Failing ECC Register.

(0x184 - 0x1BC) Reserved

0x1C0 CE_FFA[31:0] R 0x0
Correctable Error First
Failing Address

0x1C4 CE_FFA[63:32](2) R 0x0
Correctable Error First
Failing Address

(0x1C8 - 0x1FC) Reserved

http://www.xilinx.com

82 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

AXI4-Lite Slave Control/Status Register Map Detailed Descriptions

ECC_STATUS

This register holds information on the occurrence of correctable and uncorrectable errors.
The status bits are independently set to 1 for the first occurrence of each error type. The
status bits are cleared by writing a 1 to the corresponding bit position; that is, the status bits
can only be cleared to 0 and not set to 1 using a register write. The ECC Status register
operates independently of the ECC Enable Interrupt register.

0x200 UE_FFD [31:00] R 0x0
Uncorrectable Error First
Failing Data Register.

0x204 UE_FFD [63:32] R 0x0
Uncorrectable Error First
Failing Data Register.

0x208 UE_FFD [95:64](1) R 0x0
Uncorrectable Error First
Failing Data Register.

0x20C UE_FFD [127:96](1) R 0x0
Uncorrectable Error First
Failing Data Register.

(0x210 - 0x27C) Reserved

0x280 UE_FFE R 0x0
Uncorrectable Error First
Failing ECC Register.

(0x284 - 0x2BC) Reserved

0x2C0 UE_FFA[31:0] R 0x0
Uncorrectable Error First
Failing Address

0x2C4 UE_FFA[63:32](2) R 0x0
Uncorrectable Error First
Failing Address

(0x2C8 - 0x2FC) Reserved

0x300 FI_D[31:0](3) W 0x0 Fault Inject Data Register

0x304 FI_D[63:32](3) W 0x0 Fault Inject Data Register

0x308 FI_D[95:64](1)(3) W 0x0 Fault Inject Data Register

0x30C FI_D[127:96](1)(3) W 0x0 Fault Inject Data Register

(0x340 - 0x37C) Reserved

0x380 FI_ECC(3) W 0x0 Fault Inject ECC Register

Notes:
1. Data bits 64-127 are only enabled if the DQ width is 144 bits.
2. Reporting address bits 63-32 are only available if the address map is > 32 bits.
3. FI_D* and FI_ECC* are only enabled if ECC_TEST parameter has been set to '1'.

Table 1-24: ECC Control Register Map (Cont’d)

Address Offset Register Name
Access

Type
Default
Value

Description

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 83
UG406 October 19, 2011

Core Architecture

ECC_EN_IRQ

This register determines if the values of the CE_STATUS and UE_STATUS bits in the ECC
Status Register assert the Interrupt output signal (ECC_Interrupt). If both CE_EN_IRQ and
UE_EN_IRQ are set to 1 (enabled), the value of the Interrupt signal is the logical OR
between the CE_STATUS and UE_STATUS bits.

ECC_ON_OFF

The ECC On/Off Control Register allows the application to enable or disable ECC
checking. The design parameter, C_ECC_ONOFF_RESET_VALUE (default on) determines
the reset value for the enable/disable setting of ECC. This facilitates start-up operations
when ECC might or might not be initialized in the external memory. When disabled, ECC
checking is disabled for read but ECC generation is active for write operations.

Table 1-25: ECC Status Register (ECC_STATUS)

31 2 1 0

Reserved ECC_STATUS

Table 1-26: ECC Status Register Bit Definitions

Bit(s) Name
Core

Access
Reset
Value

Description

1 CE_STATUS R/W 0
If 1, a correctable error has occurred. This
bit is cleared when a 1 is written to this bit
position.

0 UE_STATUS R/W 0
If 1, an uncorrectable error has occurred.
This bit is cleared when a 1 is written to this
bit position

Table 1-27: ECC Interrupt Enable Register (ECC_EN_IRQ)

31 2 1 0

Reserved ECC_EN_IRQ

Table 1-28: ECC Interrupt Enable Register Bit Definitions

Bit(s) Name Core Access Reset Value Description

1 CE_EN_IRQ R/W 0

If 1, the value of the CE_STATUS bit of
ECC Status Register is propagated to the
Interrupt signal. If 0, the value of the
CE_STATUS bit of ECC Status Register
is not propagated to the Interrupt signal.

0 UE_EN_IRQ R/W 0

If 1, the value of the UE_STATUS bit of
ECC Status Register is propagated to the
Interrupt signal. If 0, the value of the
UE_STATUS bit of ECC Status Register
is not propagated to the Interrupt signal.

http://www.xilinx.com

84 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

CE_CNT

This register counts the number of occurrences of correctable errors. It can be cleared or
preset to any value using a register write. When the counter reaches its maximum value, it
does not wrap around, but instead it stops incrementing and remains at the maximum
value. The width of the counter is defined by the value of the C_CE_COUNTER_WIDTH
parameter. The value of the CE counter width is fixed to 8 bits.

CE_FFA[31:0]

This register stores the address (bits [31:0]) of the first occurrence of an access with a
correctable error. When the CE_STATUS bit in the ECC Status Register is cleared, this
register is re-enabled to store the address of the next correctable error. Storing of the failing
address is enabled after reset.

Table 1-29: ECC On/Off Control Register (ECC_ON_OFF)

31 1 0

Reserved ECC_ON
_OFF

Table 1-30: ECC On/Off Control Register Bit Definitions

Bit(s) Name
Core

Access
Reset Value Description

0 ECC_ON_OFF R/W Specified by
design parameter,
C_ECC_ONOFF_
RESET_VALUE

If 0, ECC checking is disabled on read
operations. (ECC generation is enabled
on write operations when C_ECC = 1).
If 1, ECC checking is enabled on read
operations. All correctable and
uncorrectable error conditions are
captured and status is updated.

Table 1-31: Correctable Error Counter Register (CE_CNT)

31 8 7 0

Reserved CE_FFA[31:0]

Table 1-32: Correctable Error Counter Register Bit Definitions

Bit(s) Name Core Access Reset Value Description

[7:0] CE_CNT R/W 0
Holds the number of correctable
errors encountered.

Table 1-33: Correctable Error First Failing Address Register (CE_FFA[31:0])

31 0

CE_FFA[31:0]

Table 1-34: Correctable Error First Failing Address [31:0] Register Bit Definitions

Bit(s) Name Core Access Reset Value Description

[31:0] CE_FFA[31:0] R 0
Address (bits [31:0]) of the
first occurrence of a
correctable error

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 85
UG406 October 19, 2011

Core Architecture

CE_FFA[63:32]

Note: This register is unused if C_S_AXI_ADDR_WIDTH < 33.

This register stores the address (bits [63:32]) of the first occurrence of an access with a
correctable error. When the CE_STATUS bit in the ECC Status Register is cleared, this
register is re-enabled to store the address of the next correctable error. Storing of the failing
address is enabled after reset.

CE_FFD[31:0]

This register stores the (uncorrected) failing data (bits [31:0]) of the first occurrence of an
access with a correctable error. When the CE_STATUS bit in the ECC Status Register is
cleared, this register is re-enabled to store the data of the next correctable error. Storing of
the failing data is enabled after reset.

CE_FFD[63:32]

This register stores the (uncorrected) failing data (bits [63:32]) of the first occurrence of an
access with a correctable error. When the CE_STATUS bit in the ECC Status Register is
cleared, this register is re-enabled to store the data of the next correctable error. Storing of
the failing data is enabled after reset.

Table 1-35: Correctable Error First Failing Address Register (CE_FFA[63:32])

31 0

CE_FFA[63:32]

Table 1-36: Correctable Error First Failing Address [63:32] Register Bit Definitions

Bit(s) Name Core Access Reset Value Description

[31:0] CE_FFA[63:32] R 0
Address (bits [63:32]) of the
first occurrence of a
correctable error.

Table 1-37: Correctable Error First Failing Data Register (CE_FFD[31:0])

31 0

CE_FFD[31:0]

Table 1-38: Correctable Error First Failing Data [31:0] Register Bit Definitions

Bit(s) Name Core Access Reset Value Description

[31:0] CE_FFD[31:0] R 0
Data (bits [31:0]) of the first
occurrence of a correctable
error.

Table 1-39: Correctable Error First Failing Data Register (CE_FFD[63:32])

31 0

CE_FFD[63:32]

http://www.xilinx.com

86 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

CE_FFD[95:64]

Note: This register is only used when DQ_WIDTH == 144.

This register stores the (uncorrected) failing data (bits [95:64]) of the first occurrence of an
access with a correctable error. When the CE_STATUS bit in the ECC Status Register is
cleared, this register is re-enabled to store the data of the next correctable error. Storing of
the failing data is enabled after reset.

CE_FFD[127:96]

Note: This register is only used when DQ_WIDTH == 144.

This register stores the (uncorrected) failing data (bits [127:96]) of the first occurrence of an
access with a correctable error. When the CE_STATUS bit in the ECC Status Register is
cleared, this register is re-enabled to store the data of the next correctable error. Storing of
the failing data is enabled after reset.

CE_FFE

This register stores the ECC bits of the first occurrence of an access with a correctable error.
When the CE_STATUS bit in the ECC Status Register is cleared, this register is re-enabled
to store the ECC of the next correctable error. Storing of the failing ECC is enabled after
reset.

Table 1-45 and Table 1-46 describe the register bit usage when DQ_WIDTH = 72.

Table 1-40: Correctable Error First Failing Data [63:32] Register Bit Definitions

Bit(s) Name Core Access Reset Value Description

[31:0] CE_FFD[63:32] R 0
Data (bits [63:32]) of the
first occurrence of a
correctable error.

Table 1-41: Correctable Error First Failing Data Register (CE_FFD[95:64])

31 0

CE_FFD[95:64]

Table 1-42: Correctable Error First Failing Data [95:64] Register Bit Definitions

Bit(s) Name Core Access Reset Value Description

[31:0] CE_FFD[95:64] R 0
Data (bits [95:64]) of the
first occurrence of a
correctable error.

Table 1-43: Correctable Error First Failing Data Register (CE_FFD[127:96])

31 0

CE_FFD[127:96]

Table 1-44: Correctable Error First Failing Data [127:96] Register Bit Definitions

Bit(s) Name Core Access Reset Value Description

[31:0] CE_FFD [127:96] R 0
Data (bits [127:96]) of the
first occurrence of a
correctable error.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 87
UG406 October 19, 2011

Core Architecture

Table 1-47 and Table 1-48 describe the register bit usage when DQ_WIDTH = 144.

UE_FFA[31:0]

This register stores the address (bits [31:0]) of the first occurrence of an access with an
uncorrectable error. When the UE_STATUS bit in the ECC Status Register is cleared, this
register is re-enabled to store the address of the next uncorrectable error. Storing of the
failing address is enabled after reset.

Table 1-45: Correctable Error First Failing ECC Register (CE_FFE) for 72-Bit
External Memory Width

31 8 7 0

Reserved CE_FFE

Table 1-46: Correctable Error First Failing ECC Register Bit Definitions for 72-Bit
External Memory Width

Bit(s) Name Core Access Reset Value Description

[7:0] CE_FFE R 0
ECC (bits [7:0]) of the first
occurrence of a correctable error.

Table 1-47: Correctable Error First Failing ECC Register (CE_FFE) for 144-Bit
External Memory Width

31 9 8 0

Reserved CE_FFE

Table 1-48: Correctable Error First Failing ECC Register Bit Definitions for 144-Bit
External Memory Width

Bit(s) Name Core Access Reset Value Description

[8:0] CE_FFE R 0
ECC (bits [8:0]) of the first
occurrence of a correctable
error.

Table 1-49: Uncorrectable Error First Failing Data Register (UE_FFA[31:0])

31 0

UE_FFA[31:0]

Table 1-50: Uncorrectable Error First Failing Address [31:0] Register Bit Definitions

Bit(s) Name Core Access Reset Value Description

[31:0] UE_FFA [31:0] R 0
Address (bits [31:0]) of the
first occurrence of an
uncorrectable error.

http://www.xilinx.com

88 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

UE_FFA[63:32]

Note: This register is unused if C_S_AXI_ADDR_WIDTH < 33.

This register stores the address (bits [63:32]) of the first occurrence of an access with an
uncorrectable error. When the UE_STATUS bit in the ECC Status Register is cleared, this
register is re-enabled to store the address of the next uncorrectable error. Storing of the
failing address is enabled after reset.

UE_FFD[31:0]

This register stores the (uncorrected) failing data (bits [31:0]) of the first occurrence of an
access with an uncorrectable error. When the UE_STATUS bit in the ECC Status Register is
cleared, this register is re-enabled to store the data of the next uncorrectable error. Storing
of the failing data is enabled after reset.

Table 1-51: Uncorrectable Error First Failing Data Register (UE_FFA[63:32])

31 0

UE_FFA[63:32]

Table 1-52: Uncorrectable Error First Failing Address [31:0] Register Bit Definitions

Bit(s) Name Core Access Reset Value Description

[31:0] UE_FFA[63:32] R 0
Address (bits [63:32]) of the
first occurrence of an
uncorrectable error

Table 1-53: Uncorrectable Error First Failing Data Register (UE_FFD[31:0])

31 0

UE_FFD[31:0]

Table 1-54: Uncorrectable Error First Failing Data [31:0] Register Bit Definitions

Bit(s) Name Core Access Reset Value Description

[31:0] UE_FFD[31:0] R 0
Data (bits [31:0]) of the first
occurrence of an
uncorrectable error.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 89
UG406 October 19, 2011

Core Architecture

UE_FFD[63:32]

This register stores the (uncorrected) failing data (bits [63:32]) of the first occurrence of an
access with an uncorrectable error. When the UE_STATUS bit in the ECC Status Register is
cleared, this register is re-enabled to store the data of the next uncorrectable error. Storing
of the failing data is enabled after reset.

UE_FFD[95:64]

Note: This register is only used when the DQ_WIDTH == 144.

This register stores the (uncorrected) failing data (bits [95:64]) of the first occurrence of an
access with an uncorrectable error. When the UE_STATUS bit in the ECC Status Register is
cleared, this register is re-enabled to store the data of the next uncorrectable error. Storing
of the failing data is enabled after reset.

Table 1-55: Uncorrectable Error First Failing Data Register (UE_FFD[63:32])

31 0

UE_FFD[63:32]

Table 1-56: Uncorrectable Error First Failing Data [63:32] Register Bit Definitions

Bit(s) Name Core Access Reset Value Description

[31:0] UE_FFD [63:32] R 0
Data (bits [63:32]) of the
first occurrence of an
uncorrectable error.

Table 1-57: Uncorrectable Error First Failing Data Register (UE_FFD[95:64])

31 0

UE_FFD[95:64]

Table 1-58: Uncorrectable Error First Failing Data [95:64] Register Bit Definitions

Bit(s) Name Core Access Reset Value Description

[31:0] UE_FFD[95:64] R 0
Data (bits [95:64]) of the
first occurrence of an
uncorrectable error.

http://www.xilinx.com

90 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

UE_FFD[127:96]

Note: This register is only used when the DQ_WIDTH == 144.

This register stores the (uncorrected) failing data (bits [127:96]) of the first occurrence of an
access with an uncorrectable error. When the UE_STATUS bit in the ECC Status Register is
cleared, this register is re-enabled to store the data of the next uncorrectable error. Storing
of the failing data is enabled after reset.

UE_FFE

This register stores the ECC bits of the first occurrence of an access with an uncorrectable
error. When the UE_STATUS bit in the ECC Status Register is cleared, this register is
re-enabled to store the ECC of the next uncorrectable error. Storing of the failing ECC is
enabled after reset.

Table 1-61 and Table 1-62 describe the register bit usage when DQ_WIDTH = 72.

Table 1-63 and Table 1-64 describe the register bit usage when DQ_WIDTH = 144.

Table 1-59: Uncorrectable Error First Failing Data Register (UE_FFD[127:96])

31 0

UE_FFD[127:96]

Table 1-60: Uncorrectable Error First Failing Data [127:96] Register Bit Definitions

Bit(s) Name Core Access Reset Value Description

[31:0] UE_FFD[127:96] R 0
Data (bits [127:96]) of the
first occurrence of an
uncorrectable error.

Table 1-61: Uncorrectable Error First Failing ECC Register (UE_FFE) for 72-Bit
External Memory Width

31 8 7 0

Reserved UE_FFE

Table 1-62: Uncorrectable Error First Failing ECC Register Bit Definitions for 72-Bit
External Memory Width

Bit(s) Name Core Access Reset Value Description

[7:0] UE_FFE R 0
ECC (bits [7:0]) of the first
occurrence of an
uncorrectable error.

Table 1-63: Uncorrectable Error First Failing ECC Register (UE_FFE) for 144-Bit
External Memory Width

31 9 8 0

Reserved UE_FFE

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 91
UG406 October 19, 2011

Core Architecture

FI_D0

This register is used to inject errors in data (bits [31:0]) written to memory and can be used
to test the error correction and error signaling. The bits set in the register toggle the
corresponding data bits (word 0 or bits [31:0]) of the subsequent data written to the
memory without affecting the ECC bits written. After the fault has been injected, the Fault
Injection Data Register is cleared automatically.

The register is only implemented if C_ECC_TEST = “ON” and C_ECC = “ON” in EDK or
ECC_TEST_FI_XOR = “ON” and ECC = “ON” in a MIG design in the CORE Generator
tool.

Injecting faults should be performed in a critical region in software; that is, writing this
register and the subsequent write to the memory must not be interrupted.

Special consideration must be given across FI_D0, FI_D1, FI_D2, and FI_D3 such that only
a single error condition is introduced.

FI_D1

This register is used to inject errors in data (bits [63:32]) written to memory and can be used
to test the error correction and error signaling. The bits set in the register toggle the
corresponding data bits (word 1 or bits [63:32]) of the subsequent data written to the
memory without affecting the ECC bits written. After the fault has been injected, the Fault
Injection Data Register is cleared automatically.

This register is only implemented if C_ECC_TEST = “ON” and C_ECC = “ON” in EDK or
ECC_TEST_FI_XOR = “ON” and ECC = “ON” in a MIG design in the CORE Generator
tool.

Injecting faults should be performed in a critical region in software; that is, writing this
register and the subsequent write to the memory must not be interrupted.

Table 1-64: Uncorrectable Error First Failing ECC Register Bit Definitions for
144-Bit External Memory Width

Bit(s) Name Core Access Reset Value Description

[8:0] UE_FFE R 0
ECC (bits [8:0]) of the first
occurrence of an
uncorrectable error.

Table 1-65: Fault Injection Data Register (FI_D0)

31 0

FI_D0

Table 1-66: Fault Injection Data (Word 0) Register Bit Definitions

Bit(s) Name Core Access Reset Value Description

[31:0] FI_D0 W 0

Bit positions set to 1 toggle the
corresponding bits [31:0] of the next
data word written to the memory.
This register is automatically cleared
after the fault has been injected.

http://www.xilinx.com

92 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

FI_D2

Note: This register is only used when DQ_WIDTH =144.

This register is used to inject errors in data (bits [95:64]) written to memory and can be used
to test the error correction and error signaling. The bits set in the register toggle the
corresponding data bits (word 2 or bits [95:64]) of the subsequent data written to the
memory without affecting the ECC bits written. After the fault has been injected, the Fault
Injection Data Register is cleared automatically.

This register is only implemented if C_ECC_TEST = “ON” and C_ECC = “ON” in EDK or
ECC_TEST_FI_XOR = “ON” and ECC = “ON” in a MIG design in the CORE Generator
tool.

Injecting faults should be performed in a critical region in software; that is, writing this
register and the subsequent write to the memory must not be interrupted.

Special consideration must be given across FI_D0, FI_D1, FI_D2, and FI_D3 such that only
a single error condition is introduced.

FI_D3

Note: This register is only used when DQ_WIDTH =144.

This register is used to inject errors in data (bits [127:96]) written to memory and can be
used to test the error correction and error signaling. The bits set in the register toggle the
corresponding data bits (word 3 or bits [127:96]) of the subsequent data written to the

Table 1-67: Fault Injection Data Register (FI_D1)

31 0

FI_D1

Table 1-68: Fault Injection Data (Word 1) Register Bit Definitions

Bit(s) Name Core Access Reset Value Description

[31:0] FI_D1 W 0

Bit positions set to 1 toggle
the corresponding bits
[63:32] of the next data
word written to the
memory. This register is
automatically cleared after
the fault has been injected.

Table 1-69: Fault Injection Data Register (FI_D2)

31 0

FI_D2

Table 1-70: Fault Injection Data (Word 2) Register Bit Definitions

Bit(s) Name Core Access Reset Value Description

[31:0] FI_D2 W 0

Bit positions set to 1 toggle the
corresponding bits [95:64] of the next
data word written to the memory. This
register is automatically cleared after
the fault has been injected.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 93
UG406 October 19, 2011

Core Architecture

memory without affecting the ECC bits written. After the fault has been injected, the Fault
Injection Data Register is cleared automatically.

The register is only implemented if C_ECC_TEST = “ON” and C_ECC = “ON” in EDK or
ECC_TEST_FI_XOR = “ON” and ECC = “ON” in a MIG design in the CORE Generator
tool.

Injecting faults should be performed in a critical region in software; that is, writing this
register and the subsequent write to the memory must not be interrupted.

FI_ECC

This register is used to inject errors in the generated ECC written to the memory and can be
used to test the error correction and error signaling. The bits set in the register toggle the
corresponding ECC bits of the next data written to memory. After the fault has been
injected, the Fault Injection ECC Register is cleared automatically.

The register is only implemented if C_ECC_TEST = “ON” and C_ECC = “ON” in EDK or
ECC_TEST_FI_XOR = “ON” and ECC = “ON” in a MIG design in the CORE Generator
tool.

Injecting faults should be performed in a critical region in software; that is, writing this
register and the subsequent write to memory must not be interrupted.

Table 1-73 and Table 1-74 describe the register bit usage when DQ_WIDTH = 72.

Table 1-71: Fault Injection Data Register (FI_D3)

31 0

FI_D3

Table 1-72: Fault Injection Data (Word 3) Register Bit Definitions

Bit(s) Name Core Access Reset Value Description

[31:0] FI_D3 W 0

Bit positions set to 1 toggle
the corresponding bits
[127:96] of the next data
word written to the
memory. The register is
automatically cleared after
the fault has been injected.

Table 1-73: Fault Injection ECC Register (FI_ECC) for 72-Bit External Memory Width

31 8 7 0

Reserved FI_ECC

Table 1-74: Fault Injection ECC Register Bit Definitions for 72-Bit External Memory
Width

Bit(s) Name Core Access Reset Value Description

[7:0] FI_ECC R 0

Bit positions set to 1 toggle the
corresponding bit of the next
ECC written to the memory. The
register is automatically cleared
after the fault has been injected.

http://www.xilinx.com

94 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

Table 1-75 and Table 1-76 describe the register bit usage when DQ_WIDTH = 144.

User Interface Block
The UI block presents the UI to a user design. It provides a simple alternative to the native
interface. The UI block:

• Buffers read and write data

• Reorders read return data to match the request order

• Presents a flat address space and translates it to the addressing required by the
SDRAM

Native Interface
The native interface connects to an FPGA user design to allow access to an external
memory device.

Command Request Signals

The native interface provides a set of signals that request a read or write command from
the memory controller to the memory device. These signals are summarized in Table 1-77.

Table 1-75: Fault Injection ECC Register (FI_ECC) for 144-Bit External Memory
Width

31 9 8 0

Reserved FI_ECC

Table 1-76: Fault Injection ECC Register Bit Definitions for 144-Bit External
Memory Width

Bit(s) Name Core Access Reset Value Description

8:0 FI_ECC R 0

Bit positions set to 1 toggle the
corresponding bit of the next
ECC written to the memory. The
register is automatically cleared
after the fault has been injected.

Table 1-77: Native Interface Command Signals

Signal Direction Description

accept Output This output indicates that the memory interface
accepts the request driven on the last cycle.

bank[2:0] Input This input selects the bank for the current
request.

bank_mach_next[] Output This output is reserved and should be left
unconnected.

cmd[2:0] Input This input selects the command for the current
request.

col[COL_WIDTH – 1:0] Input This input selects the column address for the
current request.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 95
UG406 October 19, 2011

Core Architecture

The bank, row, and column comprise a target address on the memory device for read and
write operations. Commands are specified using the cmd[2:0] input to the core. The
available read and write commands are shown in Table 1-78.

accept

This signal indicates to the user design whether or not a request is accepted by the core.
When the accept signal is asserted, the request submitted on the last cycle is accepted, and
the user design can either continue to submit more requests or go idle. When the accept
signal is deasserted, the request submitted on the last cycle was not accepted and must be
retried.

use_addr

The user design asserts the use_addr signal to strobe the request that was submitted to the
native interface on the previous cycle.

data_buf_addr

The user design must contain a buffer for data used during read and write commands.
When a request is submitted to the native interface, the user design must designate a
location in the buffer for when the request is processed. For write commands,
data_buf_addr is an address in the buffer containing the source data to be written to the
external memory. For read commands, data_buf_addr is an address in the buffer that

data_buf_addr[7:0] Input This input indicates the data buffer address
where the memory controller:

• Locates data while processing write
commands.

• Places data while processing read commands.

hi_priority Input This input is reserved and should be connected to
logic 0.

rank[] Input This input is reserved and should be connected to
logic 0.

row[ROW_WIDTH – 1:0] Input This input selects the row address for the current
request.

size Input This input is reserved and should be connected to
logic 0.

use_addr Input The user design strobes this input to indicate that
the request information driven on the previous
state is valid.

Table 1-78: Memory Interface Commands

Operation cmd[2:0] Code

Memory read 000

Memory write 001

Reserved All other codes

Table 1-77: Native Interface Command Signals (Cont’d)

Signal Direction Description

http://www.xilinx.com

96 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

receives read data from the external memory. The core echoes this address back when the
requests are processed.

Write Command Signals

The native interface has signals that are used when the memory controller is processing a
write command (Table 1-79). These signals connect to the control, address, and data signals
of a buffer in the user design.

wr_data

This bus is the data that needs to be written to the external memory. This bus can be
connected to the data output of a buffer in the user design.

wr_data_addr

This bus is an echo of data_buf_addr when the current write request is submitted. The
wr_data_addr bus can be combined with the wr_data_offset signal and applied to the
address input of a buffer in the user design.

wr_data_be

This bus is the byte enable (data mask) for the data currently being written to the external
memory. The byte to the memory is written when the corresponding wr_data_be signal is
deasserted.

wr_data_en

When asserted, this signal indicates that the core is reading data from the user design for a
write command. This signal can be tied to the chip select of a buffer in the user design.

wr_data_offset

This bus is used to step through the data buffer when the burst length requires more than
a single cycle to complete. This bus, in combination with rd_data_addr, can be applied to
the address input of a buffer in the user design.

Table 1-79: Native Interface Write Command Signals

Signal Direction Description

wr_data[(4 ´ DQ_WIDTH) – 1:0] Input This is the input data for write
commands.

wr_data_addr[7:0] Output This output provides the base
address for the source data
buffer for write commands.

wr_data_be[(4 ´ DQ_WIDTH/8) – 1:0] Input This input provides the byte
enable for the write data.

wr_data_en Output This output indicates that the
memory interface is reading
data from a data buffer for a
write command.

wr_data_offset[0:0] Output This output provides the offset
for the source data buffer for
write commands.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 97
UG406 October 19, 2011

Core Architecture

Read Command Signals

The native interface provides a set of signals used when the memory controller is
processing a read command (Table 1-80). These signals are similar to those for processing
write commands, except that they transfer data from the memory device to a buffer in the
user design.

rd_data

This bus is the data that was read from the external memory. It can be connected to the data
input of a buffer in the user design.

rd_data_addr

This bus is an echo of data_buf_addr when the current read request is submitted. This bus
can be combined with the rd_data_offset signal and applied to the address input of a buffer
in the user design.

rd_data_en

This signal indicates when valid read data is available on rd_data for a read request. It can
be tied to the chip select and write enable of a buffer in the user design.

rd_data_offset

This bus is used to step through the data buffer when the burst length requires more than
a single cycle to complete. This bus can be combined with rd_data_addr and applied to the
address input of a buffer in the user design.

Table 1-80: Native Interface Read Command Signals

Signal Direction Description

rd_data[(4 ´ DQ_WIDTH) – 1:0] Output This is the output data from read
commands.

rd_data_addr[7:0] Output This output provides the base address
of the destination buffer for read
commands.

rd_data_en Output This output indicates that valid read
data is available on the rd_data bus.

rd_data_offset[0:0] Output This output provides the offset for the
destination buffer for read commands.

http://www.xilinx.com

98 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

Memory Controller
In the core’s default configuration, the memory controller (MC) resides between the UI
block and the physical layer. This is depicted in Figure 1-46.

The memory controller is the primary logic block of the memory interface. The memory
controller receives requests from the UI and stores them in a logical queue. Requests are
optionally reordered to optimize system throughput and latency.

The MC block is organized as four main pieces:

• A configurable number of “bank machines”

• A configurable number of “rank machines”

• A column machine

• An arbitration block

Bank Machines

Most of the MC logic resides in the bank machines. Bank machines correspond to DRAM
banks. A given bank machine manages a single DRAM bank at any given time. However,
bank machine assignment is dynamic, so it is not necessary to have a bank machine for
each physical bank. The number of banks can be configured to trade off between area and
performance.

X-Ref Target - Figure 1-46

Figure 1-46: Memory Controller

rank

bank

row

col

cmd

data_buf_ad dr

size

hi_priority

use_addr

wr_data

wr_data_b e

accept

bank_mach_next

wr_data_addr

wr_data_e n

wr_data_offset

rd_data

rd_data_addr

rd_data_en

rd_data_offset

Rank Machines

Bank Machines Arbiter DFI
Interface

Physical
Layer

User
Interface

Block

Column Machine

UG406_c1_43_031609

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 99
UG406 October 19, 2011

Core Architecture

When a request is accepted, it is assigned to a bank machine. When a request is complete,
the bank machine is released and is made available for assignment to another request.
Bank machines issue all the commands necessary to complete the request.

On behalf of the current request, a bank machine must generate row commands and
column commands to complete the request. Row and column commands are independent
but must adhere to DRAM timing requirements. Column commands can be reordered for
the purpose of optimizing memory interface throughput. The ordering algorithm
nominally ensures data coherence.

Rank Machines

The rank machines correspond to DRAM ranks. Rank machines monitor the activity of the
bank machines and track rank or device-specific timing parameters. For example, a rank
machine monitors the number of activate commands sent to a rank within a time window.
After the allowed number of activates have been sent, the rank machine generates an
inhibit signal that prevents the bank machines from sending any further activates to the
rank until the time window has shifted enough to allow more activates. Rank machines are
statically assigned to a physical DRAM rank.

Column Machine

The single column machine generates the timing information necessary to manage the DQ
data bus. Although there can be multiple DRAM ranks, because there is a single DQ bus,
all the columns in all DRAM ranks are managed as a single unit. The column machine
monitors commands issued by the bank machines and generates inhibit signals back to the
bank machines so that the DQ bus is utilized in an orderly manner.

Arbitration Block

The arbitration block receives requests to send commands to the DRAM array from the
bank machines. Row commands and column commands are arbitrated independently. For
each command opportunity, the arbiter block selects a row and a column command to
forward to the physical layer. The arbitration block implements a round-robin protocol to
ensure forward progress.

Reordering

DRAM accesses are broken into two quasi-independent parts, row commands and column
commands. Each request occupies a logical queue entry, and each queue entry has an
associated bank machine. These bank machines track the state of the DRAM rank or bank
it is currently bound to, if any.

If necessary, the bank machine attempts to activate the proper rank, bank, or row on behalf
of the current request. In the process of doing so, the bank machine looks at the current
state of the DRAM to decide if various timing parameters are met. Eventually, all timing
parameters are met and the bank machine arbitrates to send the activate. The arbitration is
done in a simple round-robin manner. Arbitration is necessary because several bank
machines might request to send row commands (activate and precharge) at the same time.

Not all requests require an activate. If a preceding request has activated the same rank,
bank, or row, a subsequent request might inherit the bank machine state and avoid the
precharge/activate penalties.

After the necessary rank, bank, or row is activated and the RAS to CAS delay timing is met,
the bank machine tries to issue the CAS-READ or CAS-WRITE command. Unlike the row
command, all requests issue a CAS command. Before arbitrating to send a CAS command,

http://www.xilinx.com

100 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

the bank machine must look at the state of the DRAM, the state of the DQ bus, priority, and
ordering. Eventually, all these factors assume their favorable states and the bank machine
arbitrates to send a CAS command. In a manner similar to row commands, a round-robin
arbiter uses a priority scheme and selects the next column command.

The round-robin arbiter itself is a source of reordering. Assume for example that an
otherwise idle MC receives a burst of new requests while processing a refresh. These
requests queue up and wait for the refresh to complete. After the DRAM is ready to receive
a new activate, all waiting requests assert their arbitration requests simultaneously. The
arbiter selects the next activate to send based solely on its round-robin algorithm,
independent of request order. Similar behavior can be observed for column commands.

Error Correcting Code (ECC)
The memory controller optionally implements an error correcting code. This code protects
the contents of the DRAM array from corruption. A Single Error Correct Double Error
Detect (SECDED) code is used. All single errors are detected and corrected. All two-bit
errors are detected. Errors of more than two bits might or might not be detected.

The block diagram of ECC is as shown in Figure 1-47. These blocks are instantiated in the
memory controller (mc.v) module.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 101
UG406 October 19, 2011

Core Architecture

The ECC mode is optional and supported only for a data width of 72 bits. The data mask
feature is disabled when ECC mode is enabled. When ECC mode is enabled, the entire DQ
width is always written. The DRAM DM bits cannot be used because the ECC operates
over the entire DQ data width.

The ECC functionality is implemented as three functional blocks: write data merge and
ECC generate block, a read data ECC decode and correct block, and a data buffer block for
temporarily holding the read data for read-modify-write cycles. A fourth block generates
the ECC H matrix and passes these matrixes to the ECC generate and correct blocks.

For full burst write commands, data fetched from the write data buffer traverses the ECC
merge and generate block. This block computes the ECC bits and appends them to the
data. The ECC generate step is given one CLK state. Thus the data must be fetched from
the write data buffer one state earlier relative to the write command compared to when

X-Ref Target - Figure 1-47

Figure 1-47: ECC Block Diagram

http://www.xilinx.com

102 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

ECC is not enabled. At the user interface level, data must be written into the write data
buffer no later than one state after the command is written into the command buffer. Other
than the earlier data requirement, ECC imposes no other performance loss for writes.

For read cycles, all data traverses the ECC decode fix (ecc_dec_fix) block. This process
starts when the PHY indicates read data availability on the dfi_rddata_valid signal. The
decode fix process is divided into two CLK states. In the first state, the syndromes are
computed. In the second state, the syndromes are decoded and any indicated bit flips
(corrections) are performed. Also in the second state, the ecc_single and ecc_multiple
indications are computed based on the syndrome bits and the ecc_status_valid timing
signal generated by the memory controller core logic. The core logic also provides an
ecc_err_addr bus. This bus contains the address of the current read command. Error
locations can be logged by looking at the ecc_single, ecc_multiple, and ecc_err_addr buses.
ECC imposes a two-state latency penalty for read requests.

Read-Modify-Write

Any writes of less than the full DRAM burst must be performed as a read-modify-write
cycle. The specified location must be read, corrections (if any) performed, merged with the
write data, ECC computed, and then written back to the DRAM array. The wr_bytes
command is defined for ECC operation. When the wr_bytes command is issued, the
memory controller always performs a read-modify-write cycle instead of a simple write
cycle. The byte enables must always be valid, even for simple commands. Specifically, all
byte enables must be asserted for all wr commands when ECC mode is enabled. Table 1-81
shows the available commands when ECC mode is enabled.

When the wr_bytes command is issued, the memory controller performs a
read-modify-write (RMW) cycle. When a wr_bytes command is at the head of the queue, it
first issues a read. But unlike a normal read command, the request remains in the queue. A
bit is set in the read response queue indicating this is a RMW cycle. When the read data is
returned for this read command, app_rd_data_valid is not asserted. Instead, the ECC is
decoded, corrections (if any) are made, and the data is written into the ECC data buffer.
Meanwhile, the original wr_bytes command is examining all read returns. Based on the
data_buf_addr stored in the read return queue, the wr_bytes request can determine when
its read data is available in the ECC data buffer. At this point, the wr_bytes request starts
arbitrating to send the write command. When the command is granted, data is fetched
from the write data buffer and the ECC data buffer, merged as directed by the byte enables,
ECC is computed, and data is written to the DRAM. The wr_bytes command has
significantly lower performance than normal write commands. In the best case, each
wr_bytes command requires a DRAM read cycle and a DRAM write cycle instead of
simple DRAM write cycle. Read-to-write and write-to-read turnaround penalties further
degrade throughput.

The memory controller can buffer up to nBANK_MACHS wr_bytes commands. As long as
these commands do not conflict on a rank-bank, the memory controller strings together the
reads and then the writes, thereby avoiding much of the read-to-write and write-to-read
turnaround penalties. However, if the stream of wr_bytes commands is to a single

Table 1-81: Commands for app_cmd[2:0]

Operation app_cmd[2:0] code

Write 000

Read 001

Write Bytes 011

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 103
UG406 October 19, 2011

Core Architecture

rank-bank, each RMW cycle is completely serialized and throughput is significantly
degraded. If performance is important, it is best to avoid the wr_bytes command.

Table 1-82 provides the details of ECC ports at the user interface.

ECC Self-Test Functionality

Under normal operating conditions, the ECC part of the data written to the DRAM array is
not visible at the user interface. This can be problematic for the purposes of system self-test
because there is no way to test the bits in the DRAM array corresponding to the ECC bits.
Also errors cannot be sent to test the ECC generation and correction logic.

Controlled by the top-level parameter ECC_TEST, a DRAM array test mode can be
generated. When the ECC_TEST parameter is “ON”, the entire width of the DQ data bus is
extended through the read and write buffers in the user interface. When ECC_TEST is
“ON”, the ECC correct enable is deasserted.

To write arbitrary data into both the data and ECC parts of the DRAM array, write the
desired data into the extended width write data FIFO, and assert the corresponding
app_raw_not_ecc_i bit with the data. The width of app_raw_not_ecc_i is 7 bits (4 bits in 2:1
mode), allowing individual ECC blocks to be written with raw data in the ECC bits, or the
normal computed ECC bits. In this way, any arbitrary pattern can be written into the
DRAM array.

In the read interface, the extended data simply appears with the normal data. However, the
corrector might be trying to “correct” the read data. This is probably not desired during
array pattern test and hence app_correct_en_i should be set to zero to disable correction.

With the above two features, an array pattern test can be achieved. ECC generation logic
can be tested by writing data patterns but not asserting app_raw_not_ecc_i and

Table 1-82: User Interface for ECC Operation

Signal Direction Description

app_correct_en_i Input
When asserted, this active-High signal
corrects single bit data errors. This input is
valid only when ECC mode is enabled.

app_ecc_multiple_err[7:0] Output

This signal is applicable when ECC is
enabled. It is valid along with
app_rd_data_valid. The
app_ecc_multiple_err signal is non-zero if
the read data from the external memory
has two bit errors per beat of the read
burst. The SECDED algorithm does not
correct the corresponding read data and
puts a non-zero value on this signal to
notify the corrupted read data at the UI.

This signal is 4 bits wide when 2:1 mode is
selected.

app_raw_not_ecc_i[7:0] Input

This signal is applicable when ECC_TEST
is enabled (“ON”). It is valid along with
app_rd_data_valid. This signal is asserted
to control the individual blocks to be
written with raw data in the ECC bits.

This signal is 4 bits wide in 2:1 mode.

http://www.xilinx.com

104 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

deasserting app_correct_en_i. The data along with the computed ECC bits can be read out
and compared. ECC decode correct logic can be tested by asserting app_correct_en_i and
writing the desired raw pattern as described above. When the data is read back, the
operation of decode correct can be observed.

PHY
The PHY provides a physical interface to an external DDR2 or DDR3 SDRAM. The PHY
generates the signal timing and sequencing required to interface to the memory device. It
contains the clock-, address-, and control-generation logic, write and read datapaths, and
state logic for initializing the SDRAM after power-up. In addition, the PHY contains
calibration logic to perform timing training of the read and write datapaths to account for
system static and dynamic delays.

The PHY is provided as a single HDL codebase for both DDR2 and DDR3 SDRAMs. The
MIG tool customizes the SDRAM type and numerous other design-specific parameters
through top-level HDL parameters and constraints contained in a user constraints file
(UCF).

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 105
UG406 October 19, 2011

Core Architecture

Overall PHY Architecture

A block diagram of the PHY design is shown in Figure 1-48.

Initialization Sequence

After deassertion of system reset, the PHY performs the required power-on initialization
sequence for the memory. This is followed by several stages of timing calibration for both
the write and read datapaths. After calibration is complete, the PHY indicates that
initialization is finished, and the controller can begin issuing commands to the memory.
Figure 1-49 shows the initialization sequence.

X-Ref Target - Figure 1-48

Figure 1-48: PHY Block Diagram

DRAM Clock
Generation

Read
Capture

Clocks Gen

Control/
Address I/O

Data/
Strobe/

Mask I/O

Delay
Controller

Initialization
Sequencer

Write
Datapath
Control

Read
Datapath

Sync

Write-
Leveling/
Cal Logic

Read
Leveling

Logic

Read
Phase

Detector

IDELAY
CTRL

System
Clock/
Reset

Generation

Memory
Controller

DDR2/
DDR3

SDRAM

FPGA

DDR2/DDR3 PHY Interface

Initialization Status

DFI Control/Address

DFI Write Enable

DFI Write Data

DFI Read Enable

DFI Read Valid

DFI Read Data

I/O Configuration

Control/Address

Output IOB Logic Controls

Resynchronization Clock

Read Data

Write Datapath Delays

IODELAY
Controls

UG406_c1_44_03010

Clocks

 Addr/
Control

Data (DQ)

Strobe
(DQS)

Mask
(DM)

Read Datapath Delays

Read Datapath Delays

Debug Control
(From the Various
Blocks)

Phase
Adjustment

System Clock

0.5x Global Clock
1x Global Clock
1x I/O Clock

IODELAY Clock

Resets
IODELAY Clock

1X Capture Clock

http://www.xilinx.com

106 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

Clocking Architecture

The PHY design requires that MMCM modules are used to generate various clocks, and
both global and local clock networks are used to distribute the clock throughout the
design.

The clock generation and distribution circuitry and networks drive blocks within the PHY
that can be divided roughly into four separate, general functions:

• Internal (FPGA) logic

• Write-path (output) I/O logic

• Read-path (input) and delay I/O logic, and read data resynchronization logic in the
FPGA logic

• IODELAY reference clock (either 200 MHz or 300 MHz)

One MMCM is required for the PHY. In terms of general functionality, the MMCM is used
to generate the clocks for most of the internal logic, write-path I/O logic, and the clocks
required for read data capture and resynchronization. The clocking architecture, with the
exception of the IODELAY reference clock, is shown in Figure 1-50.

X-Ref Target - Figure 1-49

Figure 1-49: PHY Overall Initialization Sequence

System Reset

DDR2/DDR3 SDRAM Initialization

Write Leveling (For DDR3 SDRAM Only)

Write Calibration/Read Leveling

Read Phase Detector Calibration

PHY Initialization Complete

UG406_c1_45_022610

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 107
UG406 October 19, 2011

Core Architecture

The MIG tool generates a design with the appropriate MMCM parameters based on the
MMCM input clock operating at the same frequency as the memory interface. Users who
are using a different ratio of MMCM input clock to memory interface clock must modify
these parameters appropriately in the example_top.v/.vhd module. These parameters
are in turn passed to the MMCM instantiated in infrastructure.v/.vhd:

• CLKFBOUT_MULT_F

• DIVCLK_DIVIDE

• CLKOUT_DIVIDE

When modifying these parameters, the user should refer to both the MMCM Switching
Characteristics section of the Virtex-6 FPGA Data Sheet: DC and Switching Characteristics
(DS152) and the Mixed-Mode Clock Manager section of the Virtex-6 FPGA Clock Resources
User Guide (UG362) to determine the appropriate parameter values.

A 200 MHz or 300 MHz IODELAY clock (depending on the desired IODELAY tap
resolution) must be supplied to the IDELAYCTRL module. The IDELAYCTRL module

X-Ref Target - Figure 1-50

Figure 1-50: PHY Clocking Architecture

Read Data

CLKIN

IBUFG
BUFG

BUFIO

BUFIO

BUFIO

BUFR

Capture Clock -
DOS group[0]

Capture Clock -
DOS group[1]

Capture Clock -
DOS group[n]

Read Data (Synchronized to BUFG Domain)

UG406_c1_46_013011

DRAM Clocks,
Control/Address,
DM, DQ/DQS

DQ/DQS
(DQS group[0])

DQ/DQS
(DQS group[1])

DQ/DQS
(DQS group[n])

0.5x CLK

1x CLK BUFG

MMCM

Memory Clock
Frequency

System Clock
Frequency

=

FBIN FBOUT
FINE_PS

User I/F,
Controller,
PHY Logic

(CLB)

Phase
Detector
(CLB)

PHY Logic
(CLB)

IODELAY

IODELAY

IODELAY

IODELAY

I/O Logic
(OSERDES)

I/O Logic
(ISERDES,
IODELAY)

I/O Logic
(ISERDES,
IODELAY)

I/O Logic
(ISERDES,
IODELAY)

Read Data
Sync /

Circ. Buffer
(CLB)

1x CLK

OSERDES

OSERDES

OSERDES

OSERDES
÷2

http://www.xilinx.com

108 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

continuously calibrates the IODELAY elements in the I/O region to account for varying
environmental conditions. The current core assumes an external clock signal is driving the
IDELAYCTRL module. If a PLL clock drives the IDELAYCTRL input clock, the PLL lock
signal needs to be incorporated in the rst_tmp_idelay signal inside the
IODELAY_CTRL.v/vhd module. This ensures that the clock is stable before being used.

I/O Architecture

Circuitry to support both write and read leveling requirements for DDR2 and
DDR3 SDRAM exist within the logic for each I/O block, and new features have been
added to each of the three elements within each I/O block (ISERDES, OSERDES, and
IODELAY). The block diagram for the I/O logic and dedicated routing associated with a
bidirectional data (DQ) pin is shown in Figure 1-51.

Memory Initialization

The PHY executes a JEDEC-compliant DDR2 or DDR3 initialization sequence for memory
following deassertion of system reset. Each DDR2 or DDR3 SDRAM has a series of mode
registers, accessed via mode register set (MRS) commands. These mode registers
determine various SDRAM behaviors, such as burst length, read and write CAS latency,

X-Ref Target - Figure 1-51

Figure 1-51: DQ I/O Block Diagram

Write-Path Logic
(CLB)

From System
Clock MMCM

UG406_c1_47_030210

OSERDES DQ

ISERDES

IODELAY

IOB

Read-Path Logic
(CLB)

BUFG

BUFG

BUFR

BUFIO

CLK

C

CLKB
CLKDIV

CLKDIV
CLK

IDATAIN
DATAIN
CLKIN

T

Q1–Q6

DATAOUT

D

ODATAIN

T1–T4
D1–D4

TFB
OFB

TQ
OQ

÷2

1x CLK

0.5x CLK

1x CLK
IODELAY

IODELAY

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 109
UG406 October 19, 2011

Core Architecture

and additive latency. The particular bit values programmed into these registers are
configurable in the PHY and determined by the values of top-level HDL parameters.

Write Datapath

Write Leveling

DDR3 SDRAM modules have adopted fly-by topology on clocks, address, commands, and
control signals to improve signal integrity. Specifically, the clocks, address, and control
signals are all routed in a daisy-chained fashion, and termination is located at the end of
each trace. However, this causes a skew between the strobe (DQS) and the clock (CK) at
each memory device on the module. A new feature in DDR3 SDRAMs, write leveling
allows the controller to adjust each write DQS phase independently with respect to the CK
forwarded to the DDR3 SDRAM device. This compensates for the skew between DQS and
CK and meets the tDQSS specification. During write leveling, DQS is driven by the FPGA
memory interface and DQ is driven by the DDR3 SDRAM device to provide feedback. The
FPGA memory interface should have the capability to delay DQS until a 0-to-1 transition is
detected on DQ. Write leveling is performed once after power-up. The DQS delay can be
achieved with IODELAY in the Virtex-6 FPGA.

The write leveling block diagram is shown in Figure 1-52. The DQS driven by the FPGA
memory interface is used to clock a flip-flop with CK as its input. The output of this
flip-flop is provided as a feedback to the FPGA memory interface via DQ. If the level on
DQ is 0, the DQS is delayed until a 1 is detected on DQ.

The write leveling timing diagram is shown in Figure 1-53. A DQS pulse is output by the
FPGA memory interface to detect the level of CK at the DDR3 SDRAM. The interval
between DQS pulses is specified as a minimum of 16 clock cycles. DQS is delayed using the
IODELAY in unit tap increments until a 0-to-1 transition is detected on the feedback DQ
input. The DQS delay established by write leveling ensures the tDQSS specification. The
write leveling algorithm used in this memory interface design limits the number of
IODELAY taps required to delay DQS to half a CK period by inverting DQS when
required, as shown in Figure 1-54.

X-Ref Target - Figure 1-52

Figure 1-52: Write Leveling Block Diagram

QD

ISERDES

UG406_c1_48_031609

CK#

CK

DQ

DQS#

DQS

Adjust delay
until a 0-to-1
transition is

detected on DQ

CLKDIV (BUFR)

Test

Feedback
Regular

CLK (BUFIO)

OSERDES

From
PLL

IODELAY

FPGA DDR3 SDRAM

http://www.xilinx.com

110 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

Write Calibration

Write calibration is required to align DQS and its associated DQ bits to the correct CK cycle
to compensate for PCB trace delays and I/O buffer delays that exceed a CK cycle. This
calibration requires a data pattern to be written and then read back to verify that the
desired pattern was written to memory correctly. During write calibration, the appropriate
clock cycles of delay are added until the desired data pattern is read back. This calibration
is performed on a per-byte basis. As in the case of write leveling, this sequence is only
executed for DDR3 SDRAM when fly-by routing topologies are used.

Read Datapath

The read datapath ensures that both DQ data and the DQS strobe during a read from the
DDR2 or DDR3 SDRAM are reliably captured and transferred to the system clock domain.
Data transfer takes place across several clock domains as it is moved through the ISERDES
to the FPGA system clock domain.

X-Ref Target - Figure 1-53

Figure 1-53: Write Leveling Timing Diagram

X-Ref Target - Figure 1-54

Figure 1-54: Write Leveling Algorithm

CK at FPGA Output

DQS at FPGA Output

CK at DDR3 SDRAM

DQS at DDR3 SDRAM

DQS Delayed
with ODELAY

DQ Feedback X

UG406_c1_49_031609

10

CK at DDR3 SDRAM

DQ Feedback

DQS at DDR3 SDRAM

Inverted DQS at DDR3 SDRAM

DQS Delayed with ODELAY
Write Leveling Complete

X

Less than 0.5 tCK
Worth of Taps Required

Approximately 1.0 tCK
Worth of Taps Required

tCK = Clock Period

UG406_c1_50_031609

11 0

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 111
UG406 October 19, 2011

Core Architecture

The various clocks required for each stage of capture are generated by a single MMCM.
The MMCM generates both the clocks used to capture the data directly and the clock used
to move the data from the ISERDES into the CLB fabric. These clocks are routed to
IODELAY elements, which then drive BUFIO and BUFR local clock buffers. The IODELAY
elements of the capture clocks allow each of these clocks to be adjusted individually to
provide for reliable capture of the read data from memory.

The DQS from the memory is not directly used to capture the corresponding read data.
Read data is captured using an internally generated capture clock. However, the phase of
DQS is monitored during reads and compared to the capture clock. As their phases vary
with changing environmental conditions, the capture clock phase is adjusted.

The various stages (many of which are internal to the ISERDES block) are shown in
Figure 1-55. Data transfer takes four stages:

• Stage 1: Data is initially captured in the ISERDES block of each DQ/DQS
input/output block (IOB) using a local capture clock running at the same clock
frequency as the memory clock. A separate capture clock is generated for each DQS
group. The phase of this capture clock is adjusted using both the fine phase shift
feature of the sourcing MMCM and an IODELAY to constantly position the rising and
falling edges of the capture clock within the DRAM read data window.

• Stage 2: Data is then transferred within the ISERDES block to a divided-by-2 (half
rate) version of the capture clock. Each ISERDES block generates its own version of
this half-rate clock.

• Stage 3: Data is transferred from the half-rate capture clock domain to a half-rate clock
driven by a BUFR regional clock buffer. A single BUFR is used for all the ISERDES in
up to three I/O banks. Because a single BUFR is used to synchronize multiple capture
clock domains, each of which can have a different phase, the DYNCLKDIVSEL input
of the ISERDES block is used to selectively invert the BUFR clock within each
ISERDES block to maximize the data transfer timing margin during this
synchronization stage. The read leveling calibration logic determines the
DYNCLKDIVSEL values on a per DQS-group basis, and ISERDES blocks from
different DQS groups can have different DYNCLKDIVSEL values. When the data is
on the BUFR clock domain, it can be transferred to the CLB fabric.

• Stage 4: The data is then sent through a multiplexing and pipelining stage within the
fabric to align the captured data on a system clock boundary (bitslip), and to deskew
DQS groups across the entire data word, by adding pipeline delay to DQS groups that
arrive faster than others. This circuit is implemented within the CLB fabric and
clocked by the BUFR. The output of this circuit is then synchronized to the system
clock (BUFG) domain through a circular buffer implemented in the CLB fabric.

http://www.xilinx.com

112 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

Read Leveling

After system reset, memory initialization, and write leveling, the PHY executes a read
timing training calibration sequence to ensure reliable synchronization of read data from
the memory to the FPGA core clock domain. This calibration procedure adjusts the timing
of each of the read data synchronization stages using the IODELAY elements to factor out
static timing uncertainties, such as PCB-related trace delays, and process-dependent
(static) propagation delays from the memory and the FPGA. Read-leveling consists of two
stages during which different timing delays are adjusted. During both stages, a fixed
pattern is written to memory and continuously read back.

During the first stage, the capture clock is adjusted individually for each DQS group to find
the edges of the read data valid window (read data eye). After one or both edges have been
found, the capture clock phase is adjusted so that the data capture at the ISERDES for bits
in that DQS group takes place in the middle of the data eye.

Following the first stage of calibration and prior to the second, an adjustment takes place to
increase the capture to resynchronzation clock data transfer timing margin. The PHY, on a
per-DQS group basis, varies both the phase of the resynchronization clock and the polarity
of the DYNCLKDIVSEL input of the DQ and DQS ISERDES to determine which polarity of
DYNCLKDIVSEL results in the greater timing margin on the capture
clock-to-resynchronization data transfer. At the conclusion of this adjustment, the
resynchronization clock is restored to its original phase, and the optimal DYNCLKDIVSEL
settings determined during this adjustment are retained.

X-Ref Target - Figure 1-55

Figure 1-55: Read Data Synchronization (Logic for Single DQS/DQ Bit Shown)

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 113
UG406 October 19, 2011

Core Architecture

During the second stage, word alignment logic associated with each bit and DQS group is
adjusted to align the entire captured data word in the resynchronization clock domain.
This accounts for such factors as skew between different DQS groups. This also
dynamically determines the round-trip time between when a read command is issued to
the PHY, and when the corresponding read data is returned to the memory controller.

Phase Detector

In the Virtex-6 FPGA memory interface design, read DQ is not sampled by the
corresponding DQS signal. Instead, read DQ is sampled by a free-running clock operating
at the same frequency as the differential SDRAM CK/CK# signals. The free-running clock
has a single source for all DQ bits, but the phase of each byte capture clock output can be
separately adjusted using IODELAY elements. The phase detector initially locks the phase
of each byte-capture clock such that it is in phase with the corresponding DQS signal
(Figure 1-56).

Subsequent changes in capture timing delays after initial calibration due to voltage and
temperature changes can be compensated for by maintaining the phase relationship
between the byte-capture clock and the corresponding DQS. Periodic dummy reads are
required from the memory controller to dynamically maintain phase lock between the
byte-capture clock and DQS (Figure 1-57).

Periodic compensation can be accomplished by adjusting the phase of the
MMCM-generated source capture clock using the fine-phase shift capability of the
MMCM.

This method allows fine adjustment of the capture clocks of all bytes simultaneously but
does not allow control over individual byte clock phase adjustment.

X-Ref Target - Figure 1-56

Figure 1-56: Phase Detector Block Diagram

DDR2/
DDR3

SDRAM

IODELAY
DQS

Q1

rd_dqs_data [3:0]

clk_rsync

Byte Capture Clock

pd_cal_done

UG406_c1_51_022610

Q2
Q3
Q4
Q5
Q6

DQS#

ISERDES

DQS

Phase
Detector

Read
Bitslip

IODELAY

http://www.xilinx.com

114 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

Physical Interface
The physical interface connects the FPGA to an external DDR2 or DDR3 SDRAM device.
The I/O signals for this interface are shown in Table 1-83.

These signals can be connected to the corresponding signals on the memory device.

X-Ref Target - Figure 1-57

Figure 1-57: Phase Detector Timing Diagram

Taps

UG406_c1_52_032409

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

clk_cpt

Unadjusted
early_dqs

Adjusted
early_dqs

DQ Byte
(Aggregate)

Table 1-83: Physical Interface Signals

Signal Direction Description

ddr_addr[ROW_WIDTH – 1:0] Output Address

ddr_ba[BANK_WIDTH – 1:0] Output Bank address

ddr_cas_n Output Command

ddr_ck_n[0:0] Output Inverted clock

ddr_ck_p[0:0] Output Clock

ddr_cke[0:0] Output Clock enable

ddr_cs_n[0:0] Output Chip select

ddr_dm[(DQ_WIDTH/8) – 1:0] Output Data mask

ddr_dq[DQ_WIDTH – 1:0] Input/Output Data

ddr_dqs_n[DQS_WIDTH – 1:0] Input/Output Data strobe

ddr_dqs_p[DQS_WIDTH – 1:0] Input/Output Data strobe

ddr_odt[0:0] Output On-die termination (ODT)

ddr_ras_n Output Command

ddr_reset_n Output Reset

ddr_we_n Output Command

SDA(1) Input Serial data for I2C interface to
SPD EEPROM

SCL(1) Output Serial clock for I2C interface to
SPD EEPROM

Notes:
1. These pins are not used in the current memory interface designs. Refer to Configuration, page 141 for

more information.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 115
UG406 October 19, 2011

Designing with the Core

Designing with the Core
The core is bundled with an example design that can be simulated. The example design can
be used as a starting point for the user design or as a reference for debugging purposes.

Only supported modifications should be made to the configuration of the core. See
Customizing the Core, page 130 for supported configuration parameters.

Interfacing to the Core
The memory controller can be connected using either the AXI4 slave interface, the UI, or
the native interface. The AXI4 slave interface provides a full AXI4 memory-mapped
compliant slave ideal for connecting to processor subsystems. The AXI4 slave interface
converts its transactions to pass them over the UI. The UI resembles a simple FIFO
interface and always returns the data in order. The native interface offers higher
performance in some situations, but is more challenging to use.

The native interface contains no buffers and returns data as soon as possible, but the return
data might be out of order. The application must reorder the received data internally if the
native interface is used and reordering is enabled. The following sections describe timing
protocols of each interface and how they should be controlled.

AXI4 Slave Interface
The AXI4 slave interface follows the AXI4 memory-mapped slave protocol specification as
described in the ARM AMBA open specifications. Refer to this specification [Ref 1] for the
signaling details of the AXI4 slave interface.

AXI Addressing
The AXI address from the AXI master is a true byte address. The address at the user
interface of the memory controller is normalized to the data width of the external memory.
The AXI shim normalizes the address from the AXI master to the memory data width
based on the AXSIZE parameter. The address at the input of the memory controller user
interface from the AXI shim can be configured in two modes. See the User Interface section
for more details. The Bank-Row-Column or the Row-Bank-Column addressing mode
explained in User Interface is applied to the normalized address from the AXI shim.

The normalization process remaps the address based on the data width in the AXI shim.
Table 1-84 shows the first step in normalization done based on user interface data widths.
The value of the user interface data width is equal to 2 * nCK_PER_CLK *
PAYLOAD_WIDTH. PAYLOAD_WIDTH is a parameter in the user design top which
specifies the width of DQ bus used for the user data. See Table 1-85 for more information
on parameters. The shift operation is performed to define the ratio between DRAM width
and the User Interface (UI) width.

Table 1-84: Shift Operation for AXI Address Based on Data Width

UI Data Width Right Shift (Applied to Address Bits)

32 No shift

64 Shift by 1

128 Shift by 2

http://www.xilinx.com

116 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

The resultant address is then masked using Equation 1-1 for generating the mask bits.

BURST_MASK = {ADDR_WIDTH {1'b1}} ^ {(BURST_LEN + nCK_PER_CLK/2) {1'b1}}; Equation 1-1

Where:

1. ADDR_WIDTH is the memory controller address width.

2. BURST_LEN is equal to “1” for BC4 (DDR3) or BL4 (DDR2) and equal to “2” for BL8.

3. nCK_PER_CLK is the memory controller clock to DRAM clock ratio (always equal to
“2”).

For example, if the AXI data width is 64 bits and the address applied for the given
transaction on the AXI interface is 0092_4920 (hex):

1. After the first shift operation, the resulting address is 0049_2490 (hex).

2. Assuming the address width is 28 and burst mode is BL8, the mask value is
0FFF_FFF8 (hex).

3. The resulting address is 32'h0049_2490.

4. This address is driven to the UI address and if the address mode is
“ROW_BANK_COLUMN”, the corresponding addresses are ROW = 0249 (hex),
BANK = 1 (hex), and COLUMN = 090 (hex).

The address increments are performed as defined by Table 1-85 for AXI burst transactions.

User Interface
The mapping between the User Interface address bus and the physical memory row, bank,
and column is configurable. Depending on how the application data is organized, the

256 Shift by 3

512 Shift by 4

Table 1-85: Address Increments for Multiple AXI Bursts

UI Data Width BURST_LEN Address Increment Value

32 1 4

32 2 8

64 1 8

64 2 16

128 1 16

128 2 32

256 1 32

256 2 64

512 1 64

512 2 128

Table 1-84: Shift Operation for AXI Address Based on Data Width (Cont’d)

UI Data Width Right Shift (Applied to Address Bits)

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 117
UG406 October 19, 2011

Interfacing to the Core

Bank-Row- Column or Row-Bank-Column addressing scheme can be chosen to optimize
controller efficiency. These addressing schemes are shown in Figure 1-58 and Figure 1-59.

Command Path
When the user logic app_en signal is asserted and the app_rdy signal is asserted from the
UI, a command is accepted and written to the FIFO by the UI. The command is ignored by
the UI whenever app_rdy is deasserted. The user logic needs to hold app_en High along
with the valid command and address values until app_rdy is asserted as shown in
Figure 1-60.

X-Ref Target - Figure 1-58

Figure 1-58: Memory Address Mapping for Bank-Row-Column Mode in the UI Module

User Address

A
n

A
0

A
1

A
2

A
3

A
4

A
-

Memory

Rank Bank Row Column

UG406_c1_78_091609

X-Ref Target - Figure 1-59

Figure 1-59: Memory Address Mapping for Row-Bank-Column Mode in the UI Module

User Address

A
n

A
0

A
1

A
2

A
3

A
4

A
-

Memory

Rank Row Bank Column

UG406_c1_92_013011

http://www.xilinx.com

118 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

A non back-to-back write command can be issued as shown in Figure 1-61.

This figure depicts three scenarios for the app_wdf_data, app_wdf_wren, and
app_wdf_end signals, as per the following:

1. Write data is presented along with the corresponding write command (second half of
BL8).

2. Write data is presented before the corresponding write command.

3. Write data is presented after the corresponding write command, but should not exceed
the limitation of two clock cycles.

For write data that is output after the write command has been registered, as shown in
Note 3, the maximum delay is two clock cycles.

X-Ref Target - Figure 1-60

Figure 1-60: UI Command Timing Diagram with app_rdy Asserted
UG406_c1_79_022610

CLK

app_cmd WRITE

app_addr Addr 0

app_en

app_rdy

Command is accepted when app_rdy is High and app_en is High.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 119
UG406 October 19, 2011

Interfacing to the Core

X-Ref Target - Figure 1-61

Figure 1-61: UI Write Timing Diagram (Memory Burst Type = BL8)

UG406_c1_80_022610

app_wdf_data

CLK

app_cmd WRITE

app_addr Addr 0

app_wdf_end

app_en

app_wdf_wren

app_rdy

app_wdf_mask

app_wdf_rdy

W0 W1

W0 W1app_wdf_data

app_wdf_end

app_wdf_wren

app_wdf_data

app_wdf_end

app_wdf_wren

W0 W1

Maximum allowed data
delay from addr/cmd
is two clocks as shown
in Event 3.

1

2

3

http://www.xilinx.com

120 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

Write Path
The write data is registered in the write FIFO when app_wdf_wren is asserted and
app_wdf_rdy is High (Figure 1-62). If app_wdf_rdy is deasserted, the user logic needs to
hold app_wdf_wren and app_wdf_end High along with the valid app_wdf_data value
until app_wdf_rdy is asserted. The app_wdf_mask signal can be used to mask out the
bytes to write to external memory.

As shown in Figure 1-60, page 118, the maximum delay for a single write between the
write data and the associated write command is two clock cycles. When issuing
back-to-back write commands, there is no maximum delay between the write data and the
associated back-to-back write command, as shown in Figure 1-63.

X-Ref Target - Figure 1-62

Figure 1-62: UI Interface Write Timing Diagram with app_wdf_rdy Asserted
(DDR2 and DDR3 SDRAM: Memory Burst Type = BL8)

UG406_c1_81_012610

app_wdf_data

CLK

app_cmd

W0 W1

WRITE

app_addr Addr 0

app_wdf_end

app_en

app_wdf_wren

app_rdy

app_wdf_mask

app_wdf_rdy

Command is accepted when app_rdy is High and app_en is High.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 121
UG406 October 19, 2011

Interfacing to the Core

The app_wdf_end signal must be used to indicate the end of a memory write burst.
Figure 1-64 shows the write timing for a design that has the memory burst type set to four.
For memory burst types of eight, the app_wdf_end signal must be asserted on the second
write data word, as shown in Figure 1-60, page 118.

X-Ref Target - Figure 1-63

Figure 1-63: UI Back-to-Back Write Commands Timing Diagram
(Memory Burst Type = BL8)

UG406_c1_82_031110

app_wdf_data

CLK

app_cmd

W a0

WRITE WRITE WRITE WRITE WRITE WRITE WRITE

app_addr Addr a Addr b Addr c Addr d Addr e Addr f Addr g

app_wdf_end

app_en

app_wdf_wren

app_rdy

app_wdf_mask

app_wdf_rdy

W a1 W b0 W b1 W c0 W c1 W d0 W d1 W e0 W e1 W f0 W f1 W g0 W g1

Write data delay from
back-to-back write
commands and
corresponding write data
can exceed more than
two clock cycles as shown.

X-Ref Target - Figure 1-64

Figure 1-64: UI Back-to-Back Write Commands Timing Diagram
(DDR2 SDRAM: Memory Burst Type = BL4)

UG406_c1_90_052110

app_wdf_data

CLK

app_cmd

W a0

WRITE WRITE WRITE WRITE WRITE WRITE WRITE

app_addr Addr a Addr b Addr c Addr d Addr e Addr f Addr g

app_wdf_end

app_en

app_wdf_wren

app_rdy

app_wdf_mask

app_wdf_rdy

W b0 W c0 W d0 W e0 W f0 W g0

http://www.xilinx.com

122 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

The notes relevant to Figure 1-65 are:

1. The add/write command is issued at the same cycle of the last user burst word.

2. The add/write command is issued one clock delay from the last user burst word.

3. The user data is allowed to have at most a two-clock latency after the corresponding
write command has been issued.

When the memory burst type is set to BC4, last four bits of burst are ignored by the
SDRAM. The DDR3 SDRAM provides the on the fly (OTF) mode and allows the user logic
to change the memory burst type via the A12 address bit. The user can end a write
transaction earlier for four write bits by asserting the app_wdf_end signal, as shown in
Figure 1-66.

X-Ref Target - Figure 1-65

Figure 1-65: UI Scattered Write Timing Diagram
(DDR3 SDRAM: Memory Burst Type = BC4)

UG406_c1_83_052110

app_wdf_data

CLK

app_cmd WRITE

app_addr Addr 0

WRITE

Addr 1

W0 W1

W0 W1

W0 W1

app_wdf_end

app_en

app_wdf_wren

app_rdy

app_wdf_mask

app_wdf_rdy

app_wdf_data

app_wdf_end

app_wdf_wren

app_wdf_data

app_wdf_end

app_wdf_wren

Maximum allowed data delay from addr/cmd is two clocks as shown in Event 3.

1

2

3

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 123
UG406 October 19, 2011

Interfacing to the Core

The map of the application interface data to the DRAM output data can be explained with
an example. For a 2:1 memory controller to DRAM clock ratio, the application data width
is 32 bits. Hence for a BL8 transaction, the data at the application interface must be
provided in two clock cycles. The app_wdf_end signal is asserted for the second data as
shown in Figure 1-67. In this case, the application data provided in the first cycle is
0000_0405 (hex) and the data provided in the last cycle is 0000_080A (hex). This is for a
BL8 transaction.

The corresponding data at the DRAM interface is as shown in Figure 1-68.

The data values at different clock edges are as shown in Table 1-86.

X-Ref Target - Figure 1-66

Figure 1-66: UI Back-to-Back Write Commands Timing Diagram (Memory Burst Type = OTF)

UG406_c1_84_072810

app_wdf_data

CLK

app_cmd

W a0

WRITE WRITE WRITE WRITE WRITE WRITE WRITE

app_addr Addr a Addr b Addr c Addr d Addr e Addr f Addr g

app_wdf_end

app_en

app_wdf_wren

app_rdy

app_wdf_mask

app_wdf_rdy

W a1 W b0 W b1 W c0 W c1 W d0 W d1 W e0 W e1 W f0 W f1 W g0

Deasserting app_sz during
last command and assserting
app_wdf_end at
app_wdf_data “W g0”
instruct the memory
controller to issue OTF BC4.

app_sz

X-Ref Target - Figure 1-67

Figure 1-67: Data at the Application Interface for 2:1 Mode

X-Ref Target - Figure 1-68

Figure 1-68: Data at the DRAM Interface for 2:1 Mode

http://www.xilinx.com

124 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

Read Path
The read data is returned by the UI in the requested order and is valid when
app_rd_data_valid is asserted (Figure 1-69). The app_rd_data_end signal indicates the end
of each read command burst and is not needed in user logic.

Table 1-86: Data Values at Different Clock Edges

Rise0 Fall0 Rise1 Fall1 Rise2 Fall2 Rise3 Fall3

05 04 00 00 0a 08 00 00

X-Ref Target - Figure 1-69

Figure 1-69: UI Read Timing Diagram

UG406_c1_85_022610

app_rd_data

CLK

app_cmd

W0 W1

READ

app_addr Addr 0

app_rd_data_end

app_en

app_rd_data_valid

app_rdy

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 125
UG406 October 19, 2011

Interfacing to the Core

Native Interface
The native interface protocol is shown in Figure 1-70.

Requests are presented to the native interface as an address and a command. The address
is composed of the bank, row, and column inputs. The command is encoded on the cmd
input.

The address and command are presented to the native interface one state before they are
validated with the use_addr signal. The memory interface indicates that it can accept the
request by asserting the accept signal. Requests are confirmed as accepted when use_addr
and accept are both asserted in the same clock cycle. If use_addr is asserted but accept is
not, the request is not accepted and must be repeated. This behavior is shown in
Figure 1-71.

In Figure 1-71, requests 1 and 2 are accepted normally. The first time request 3 is presented,
accept is driven Low, and the request is not accepted. The user design retries request 3,

X-Ref Target - Figure 1-70

Figure 1-70: Native Interface Protocol

X-Ref Target - Figure 1-71

Figure 1-71: Native Interface Flow Control

UG406_c1_54_031609

clk

rank, bank, row, column

cmd, size, hi_priority

accept

use_addr

data_buf_addr

wr_data_en

wr_data_addr

wr_data_en

wr_data_addr

rd_data_en

rd_data_addr

rd_data

wr_data

wr_data_be

D0–D3 D4–D7

D0–D3 D4–D7

 DELAY_WR_DATA_CNTRL == 0
Available When nCWL = [7,8]

 DELAY_WR_DATA_CNTRL == nPHY_WRLAT
Available When nCWL = [5,8]

clk

rank, bank, row, column

cmd, size, hi_priority

accept

use_addr

data_buf_addr

UG406_c1_55_031609

1 2 3 3 4

1 2 3 3 4

1 2 3 3 4

1 2 3 3 4

1 2 3 3 4

http://www.xilinx.com

126 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

which is accepted on the next attempt. Request 4 is subsequently accepted on the first
attempt.

The data_buf_addr bus must be supplied with requests. This bus is an address pointer into
a buffer that exists in the user design. It tells the core where to locate data when processing
write commands and where to place data when processing read commands. When the core
processes a command, the core echoes data_buf_addr back to the user design via
wr_data_addr for write commands and rd_data_addr for read commands. This behavior is
shown in Figure 1-72. Write data must be supplied in the same clock cycle that wr_data_en
is asserted.

Transfers can be isolated with gaps of non-activity, or there can be long bursts with no
gaps. The user design can identify when a request is being processed and when it finishes
by monitoring the rd_data_en and wr_data_en signals. When the rd_data_en signal is
asserted, the memory controller has completed processing a read command request.
Similarly, when the wr_data_en signal is asserted, the memory controller is processing a
write command request.

When NORM ordering mode is enabled, the memory controller reorders received requests
to optimize throughput between the FPGA and memory device. The data is returned to the
user design in the order processed, not the order received. The user design can identify the
specific request being processed by monitoring rd_data_addr and wr_data_addr. These
fields correspond to the data_buf_addr supplied when the user design submits the request
to the native interface. Both of these scenarios are depicted in Figure 1-72.

The native interface is implemented such that the user design must submit one request at
a time and, thus, multiple requests must be submitted in a serial fashion. Similarly, the core
must execute multiple commands to the memory device one at a time. However, due to
pipelining in the core implementation, read and write requests can be processed in parallel
at the native interface.

X-Ref Target - Figure 1-72

Figure 1-72: Command Processing

clk

wr_data_en

wr_data_addr

wr_data_offset

wr_data

wr_data_be

rd_data_en

rd_data_addr

rd_data_addr

rd_data

0

D0-D3

0

D0-D3

1

D4-D7

0

D0-D3

1

D4-D7

0

D0-D3

1

D4-D7

0

D0-D3

1

D4-D7

1

D4-D7

0

Two Back-to-Back
Data Bursts

D0-D3

1

D4-D7

UG406_c1_56_031609

Two Back-to-Back
Data Bursts

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 127
UG406 October 19, 2011

Core Constraints

Read Latency
Read latency is measured from the point where the read command is accepted by the UI or
native interface. In general, read latency varies based on several parameters:

• The number of commands already in the pipeline before the read command is issued

• Whether an ACTIVATE command needs to be issued to open the new bank/row

• Whether a PRECHARGE command needs to be issued to close a previously opened
Bank

• Specific timing parameters for the memory, such as TRAS and TRCD in conjunction
with the bus clock frequency

• Commands can be interrupted, and banks/rows can forcibly be closed when the
periodic AUTO REFRESH command is issued

• CAS latency

Table 1-87 shows the read latency for two cases of the Virtex-6 FPGA DDR2 and DDR3
memory interfaces. Both cases have the refresh, zqcalib, and periodic reads disabled.

Core Constraints
The Virtex-6 FPGA DDR2/DDR3 memory interface solutions require a number of UCF
constraints in addition to the system clock period, and pinout-related constraints to meet
specified performance requirements.

Constraints provided with the integrated block solution have been tested in hardware and
provide consistent results. Constraints can be modified, but modifications should only be
made with a thorough understanding of the effect of each constraint. Support is not
provided for designs that deviate from the provided constraints.

Timing Constraints
This section defines clock frequency and critical datapath requirements for the PHY core.

BUFR Resynchronization Clock Period Constraint

BUFR local clock buffer(s) are used in the design to synchronize read data captured at the
ISERDES into the CLB logic. These clocks run at half the memory clock rate. They must be
specified separately because the timing tools cannot infer their clock frequency as these
clocks are forwarded through OSERDES blocks. The period constraint must be set to twice
the memory clock period. For example, for a DDR3 design with the memory running at
500 MHz (1,000 Mb/s), this constraint should be set to 4.0 ns.

NET "u_memc_ui_top/u_mem_intfc/phy_top0/clk_rsync[?]" TNM_NET =
TNM_clk_rsync;
TIMESPEC "TS_clk_rsync" = PERIOD "TNM_clk_rsync" 4.0 ns;

Table 1-87: Read Latency for Virtex-6 FPGA DDR2 and DDR3 Memory

Scenario

Read Latency

UI-to-UI
Interface

MC Native to MC Native Interface

Read to an unopened bank 40 34

Read to an opened bank 38 32

http://www.xilinx.com

128 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

BUFR Resynchronization Full-Cycle Path

The Q outputs of the DQ and DQS capture ISERDES are clocked by a BUFR local buffer.
The polarity of this clock within the ISERDES is determined by the DYNCLKDIVSEL input
of the ISERDES, the setting of which is determined by the PHY during read leveling. The Q
outputs in turn drive two groups of CLB flip-flops, one clocked by the BUFR rising edge,
and the other by the BUFR falling edge. Only one of the two groups of CLB flip-flops is
used based on the setting of DYNCLKDIVSEL. For example, if DYNCLKDIVSEL is set to 1,
the ISERDES Q outputs are clocked by the falling edge of BUFR, and only the BUFR
falling-edge CLB flops are used. A constraint in the UCF is added to prevent the half-cycle
path between the rising edge of BUFR (driving the ISERDES Q outputs) and the CLB
flip-flops clocked by the falling edge of BUFR from being analyzed—this is a false path.
This constraint forces full-cycle timing to be applied globally for all rising to falling edge
BUFR paths. The only such paths in the design are between the ISERDES Q outputs and
the CLB flip-flops. If the user modifies the logic in the BUFR domain such that other rising
to falling edge paths exist, the constraint below must be modified to affect only the DQ and
DQS ISERDES Q output paths.

TIMEGRP 'TG_clk_rsync_rise' = RISING 'TNM_clk_rsync';
TIMEGRP 'TG_clk_rsync_fall' = FALLING 'TNM_clk_rsync';
TIMESPEC 'TS_clk_rsync_rise_to_fall' =
FROM 'TG_clk_rsync_rise' TO 'TG_clk_rsync_fall' 'TS_sys_clk' * 2;

PHY_INIT_DATA_SEL Multi-Cycle Path

The PHY_INIT_DATA_SEL net selects whether to output to the DDR2/DDR3 memory
data from the controller portion of the MIG design, or data internally generated within the
PHY to the memory. A multi-cycle path constraint is added in the UCF for
PHY_INIT_DATA_SEL to relax the timing constraint on this net. The user should not
increase the timing constraint beyond what is specified in the MIG-generated output.

INST
"u_memc_ui_top/u_mem_intfc/phy_top0/u_phy_init/u_ff_phy_init_data_sel"
TNM = "TNM_PHY_INIT_SEL";
TIMESPEC "TS_MC_PHY_INIT_SEL" = FROM "TNM_PHY_INIT_SEL" TO FFS =
"TS_sys_clk"*4;

Location and I/O Constraints
The MIG tool generates the pin locations and I/O standard constraints according to the
selected memory type and the defined physical layer rules, as listed in Design Guidelines,
page 137. A number of internal elements (OSERDES, IODELAY, MMCM) are explicitly
located via UCF LOC constraints in a MIG-generated design. Changing the location of
these constraints to accommodate post-MIG pinout changes is possible, but requires that
the user be familiar with the X-Y coordinate system used to specify internal FPGA
locations. The user should also be able to determine the correct X-Y location for a particular
constraint in a given device and package. X-Y locations can be determined through use of
the PARTGen utility or fpga_editor tools.

Resynchronization Clock Forwarding and Distribution Elements

The resynchronization clock is generated and distributed through an OSERDES, an
IODELAY (configured as an ODELAY), and a BUFR local clock buffer network. The
resynchronization clock is used to synchronize read data captured at the ISERDES into the
FPGA logic. There is one distinct resynchronization clock per I/O column used on the part.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 129
UG406 October 19, 2011

Core Constraints

The OSERDES and IODELAY for a particular resynchronization clock are, in turn,
associated with a particular I/O site. The requirements of this I/O site are:

• The P-side of a clock-capable I/O pin pair must be used. This can either be an SRCC
or MRCC I/O pin. The N-side of a clock-capable I/O pair cannot be used for this
purpose.

• All other DDR2/DDR3 data (DQ) pins in the same I/O column must either be in the
same bank or in the bank immediately above or below.

• The I/O site must not be connected on the user’s PCB. Although no signal is actively
driven out of the FPGA, the I/O site corresponding to this pin is unavailable to other
logic.

After an appropriate clock-capable I/O pin is located, PARTGen or fpga_editor can be
used to determine the corresponding X-Y coordinates for that particular I/O site. For
example, for an XC6VLX240T-FF1156 device, if the I/O site corresponds to pin D34
(Bank 16), the LOC constraints for the OSERDES and IODELAY are:

INST
"u_memc_ui_top/u_mem_intfc/phy_top0/u_phy_read/u_phy_rdclk_gen/gen_loo
p_col0.u_oserdes_rsync" LOC = "OLOGIC_X0Y183";
INST
"u_memc_ui_top/u_mem_intfc/phy_top0/u_phy_read/u_phy_rdclk_gen/gen_loo
p_col0.u_odelay_rsync" LOC = "IODELAY_X0Y183";

One of the two BUFRs accessible by the MRCC I/O site must be specified. The X-Y
coordinate of this BUFR can be determined through the fpga_editor. In the previous
example, for an MRCC used in Bank 16, either BUFR_X0Y9 or BUFR_X0Y10 can be used:

INST
"u_memc_ui_top/u_mem_intfc/phy_top0/u_phy_read/u_phy_rdclk_gen/gen_loo
p_col0.u_bufr_rsync" LOC = "BUFR_X0Y9";

CONFIG_PROHIBIT constraints for each of the I/O sites used in this manner are inserted
by the MIG tool to prevent the use of these pins for other logic.

Capture Clock Forwarding and Distribution Elements

The capture clock is generated and distributed through an OSERDES, an IODELAY
(configured as an ODELAY), and a BUFIO local clock buffer network. The capture clock is
used to direct capture read data from the DDR2/DDR3 memory at the ISERDES. There is
one distinct capture clock per DQS group; for example, for a 72-bit data bus with an 8:1
DQ:DQS ratio, there are nine different capture clocks, one for each byte. The OSERDES and
IODELAY for a particular capture clock are, in turn, associated with a particular I/O site.
The requirements of this I/O site are:

• The P-side of a clock-capable I/O pin pair must be used. This can either be an SRCC
or MRCC I/O pin. The N-side of a clock-capable I/O pair cannot be used for this
purpose.

• All DQ, DQS, and DM pins belonging to a particular DQS group must reside in the
same bank.

• The I/O site must not be connected on the user’s PCB. Although no signal is actively
driven out of the FPGA, the I/O site corresponding to this pin is unavailable to other
logic.

After an appropriate clock-capable I/O pin is located, PARTGen or fpga_editor can be
used to determine the corresponding X-Y coordinates for that particular I/O site. For

http://www.xilinx.com

130 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

example, for a XC6VLX240T-FF1156 device, if the I/O site corresponds to pin C28
(Bank 25), the LOC constraints for the OSERDES and IODELAY are:

INST
"u_memc_ui_top/u_mem_intfc/phy_top0/u_phy_read/u_phy_rdclk_gen/gen_ck_
cpt[0].u_oserdes_cpt" LOC = "OLOGIC_X1Y141";
INST
"u_memc_ui_top/u_mem_intfc/phy_top0/u_phy_read/u_phy_rdclk_gen/gen_ck_
cpt[0].u_odelay_cpt" LOC = "IODELAY_X1Y141";

Unlike the case for the resynchronization clock constraints, the BUFIO location does not
need to be specified. The tools automatically infer the use of an appropriate BUFIO.
CONFIG_PROHIBIT constraints for each of the I/O sites used in this manner are also
inserted by the MIG tool to prevent the use of these pins for other logic.

MMCM Locations

The Virtex-6 FPGA DDR2/DDR3 design requires the use of an MMCM. There are two
MMCMs per horizontal clock row (HROW). The MIG tool places this MMCM in the same
HROW as the bank in which the DDR3 control and address outputs are located. For
example, for a XC6VLX240T-FF1156 device, if the control and address is placed in either
Banks 26 or 36 (these banks reside on the same HROW), the corresponding MMCM
location is:

INST "u_infrastructure/u_mmcm_adv" LOC = "MMCM_ADV_X0Y9";

Customizing the Core
The Virtex-6 FPGA memory interface solution supports several configurations for both
DDR2 and DDR3 SDRAM devices. The specific configuration is defined by Verilog
parameters in the top level of the core. The MIG tool should be used to regenerate a design
when parameters need to be changed. The parameters set by the MIG tool are summarized
in Table 1-88 and Table 1-89. The parameter name in EDK differs slightly and is listed as
the name in parentheses. If the parameter name does not have an equivalent EDK
parameter name, no name is listed in parentheses. The value of the parameter is either
auto-computed or fixed and cannot be modified.

Table 1-88: Virtex-6 FPGA Memory Solution Configuration Parameters

Parameter Description Options

REFCLK_FREQ(1)

(C_REFCLK_FREQ)
This is the reference clock frequency for
IODELAYCTRLs. This can be set to 200.0 for any
speed grade device or 300.0 for a -2 or -3 device.
For more information, refer to the IODELAYE1
Attribute Summary table in the Virtex-6 FPGA
SelectIO Resources User Guide [Ref 4].

200.0, 300.0

SIM_BYPASS_INIT_CAL(2)

(C_BYPASS_INIT_CAL)
This parameter is used to set the individual
calibration and initialization procedure used for
simulation. It can be used to significantly shorten
the simulation time during initial power-up,
initialization, and calibration.

“OFF”
“SKIP”
“FAST”

SIM_CAL_OPTION(3) This is the calibration procedure for simulation.
The value of this parameter is ignored when
SIM_BYPASS_INIT_CAL is set to a value other
than “NONE”.

“NONE”
“FAST_CAL”

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 131
UG406 October 19, 2011

Customizing the Core

SIM_INIT_OPTION(4) This is the initialization procedure for
simulation. The value of this parameter is
ignored when SIM_BYPASS_INIT_CAL is set to
a value other than “NONE”.

“NONE”
“SKIP_PU_DLY”

nCK_PER_CLK This is the number of memory clocks per clock. 2

nCS_PER_RANK
(C_NCS_PER_RANK)

This is the number of unique CS outputs per rank
for the PHY.

1, 2

DQS_CNT_WIDTH This is the number of bits required to index the
DQS bus and is given by
ceil(log2(DQS_WIDTH)).

ADDR_WIDTH This is the memory address bus width. It is equal
to RANK_WIDTH + BANK_WIDTH +
ROW_WIDTH + COL_WIDTH.

BANK_WIDTH
(C_BANK_WIDTH)

This is the number of memory bank address bits. This option is based on the selected
memory device.

CS_WIDTH
(C_CS_WIDTH)

This is the number of unique CS outputs to
memory.

This option is based on the selected
MIG tool configuration.

CK_WIDTH
(C_CK_WIDTH)

This is the number of CK/CK# outputs to
memory.

This option is based on the selected
MIG tool configuration.

CKE_WIDTH
(C_CKE_WIDTH)

This is the number of CKE outputs to memory. This option is based on the selected
MIG tool configuration.

COL_WIDTH
(C_COL_WIDTH)

This is the number of memory column address
bits.

This option is based on the selected
memory device.

RANK_WIDTH This is the number of bits required to index the
RANK bus and is given by ceil(log2(RANKS)).

This option is based on the selected
memory device.

ROW_WIDTH
(C_ROW_WIDTH)

This is the DRAM component address bus width. This option is based on the selected
memory device.

DM_WIDTH
(C_DM_WIDTH)

This is the number of data mask bits. DQ_WIDTH/8

DQ_WIDTH
(C_DQ_WIDTH)

This is the memory DQ bus width. This parameter supports DQ widths
from 8 to a maximum of 144 in
increments of 8. The available
maximum DQ width is frequency
dependent on the selected memory
device.

DQS_WIDTH
(C_DQS_WIDTH)

This is the memory DQS bus width. DQ_WIDTH/8

BURST_MODE
(C_BURST_MODE)

This is the memory data burst length. DDR2: “8”, “4”
DDR3: “8”, “4”, “OTF”

BM_CNT_WIDTH This is the number of bits required to index a
bank machine and is given by
ceil(log2(nBANK_MACHS)).

Table 1-88: Virtex-6 FPGA Memory Solution Configuration Parameters (Cont’d)

Parameter Description Options

http://www.xilinx.com

132 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

ADDR_CMD_MODE
(C_ADDR_CMD_MODE)

This parameter is used by the controller to
calculate timing on the memory addr/cmd bus.
The 2T option has memory command and
address signals asserted for two cycles to provide
better signal integrity. 1T can allow better
controller efficiency because it provides more
time slots for commands to the memory. 1T is
recommended for DDR3 SDRAM, and 2T is
recommended for wider DDR2 SDRAM
interfaces such as UDIMM. Board simulations
are recommended to determine if 2T is required.

“2T”

“1T”

ORDERING(5)

(C_ORDERING)
This option reorders received requests to
optimize data throughput and latency.

“NORM”: Allows the memory
controller to reorder commands to
memory to obtain the highest possible
efficiency.

“STRICT”: Forces the memory
controller to execute commands in the
exact order received.

STARVE_LIMIT This sets the number of times a read request can
lose arbitration before the request declares itself
high priority. The actual number of lost
arbitrations is STARVE_LIMIT ×
nBANK_MACHS.

1, 2, 3, ... 10

WRLVL This option enables write leveling calibration in
DDR3 designs. For DIMM designs, this is
required to be ON. For DDR3 component designs
that use fly-by routing, this option should be
turned ON. The value of this parameter is
ignored when SIM_BYPASS_INIT_CAL is set to
“SKIP”.

DDR3: “ON”, “OFF”
DDR2: “OFF”

PHASE_DETECT This is the phase detector. It adjusts capture for
voltage and temperature compensation. The
value of this parameter is ignored when
SIM_BYPASS_INIT_CAL is set to “SKIP”.

“ON”: For interfaces above 250 MHz
“OFF”: For interfaces below 250 MHz

RTT_NOM (C_RTT_NOM) This is the nominal ODT value. DDR3_SDRAM:

“120”: RZQ/2
“60”: RZQ/4
“40”: RZ/6

DDR2_SDRAM:

“DISABLED”: RTT_NOM disabled.
“150”: 150 Ω
“75”: 75 Ω
“50”: 50 Ω

RTT_WR (C_RTT_WR) This is the dynamic ODT write termination used
in multiple-RANK designs. For
single-component designs, RTT_WR should be
disabled.

DDR3_SDRAM:

“OFF”: RTT_WR disabled.
“120”: RZQ/2
“60”: RZQ/4

Table 1-88: Virtex-6 FPGA Memory Solution Configuration Parameters (Cont’d)

Parameter Description Options

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 133
UG406 October 19, 2011

Customizing the Core

OUTPUT_DRV
(C_OUTPUT_DRV)

This is the DRAM reduced output drive option. “HIGH”
“LOW”

REG_CTRL
(C_REG_CTRL)

This is the option for DIMM or unbuffered
DIMM selection.

“ON”: Registered DIMM
“OFF”: Components, SODIMMs,
UDIMMs.

IODELAY_GRP
(C_IODELAY_GRP)

This is an ASCII character string to define an
IODELAY group used in a memory design. This
is used by the ISE tools to group all instantiated
IODELAYs into the same bank. Unique names
must be assigned when multiple IP cores are
implemented on the same FPGA.

Default: “IODELAY_MIG”

nDQS_COL0
(C_NDQS_COL0)

This parameter defines how many DQS groups
are implemented in inner I/O column 0.

nDQS_COL1
(C_NDQS_COL1)

This parameter defines how many DQS groups
are implemented in inner I/O column 1.

nDQS_COL2
(C_NDQS_COL2)

This parameter defines how many DQS groups
are implemented in outer I/O column 2. The
performance is lower if DQS groups are
implemented in the outer I/O column.

nDQS_COL3
(C_NDQS_COL3)

This parameter defines how many DQS groups
are implemented in outer I/O column 3. The
performance is lower if DQS groups are
implemented in the outer I/O column.

DQS_LOC_COL0
(C_DQS_LOC_COL0)

This parameter defines which DQ bytes are
mapped to inner I/O column 0.

Bytes 0, 1, and 3 are mapped to the
column in a 16-bit DQ design, for
example, 24'h020100

DQS_LOC_COL1
(C_DQS_LOC_COL1)

This parameter defines which DQ bytes are
mapped to inner I/O column 1.

Bytes 3, 4, 5, 6, 7, and 8 are mapped to
the column, for example,
48'h080706050403

DQS_LOC_COL2
(C_DQS_LOC_COL2)

This parameter defines which DQ bytes are
mapped to outer I/O column 2.

DQS_LOC_COL3
(C_DQS_LOC_COL3)

This parameter defines which DQ bytes mapped
to outer I/O column 3.

ECC_TEST (C_ECC_TEST) This option, when set to “ON,” allows the entire
DRAM bus width to be accessible though the UI.
For example, if DATA_WIDTH == 64, the
app_rd_data width is 288.

“ON”
“OFF”

PAYLOAD_WIDTH This is the actual DQ bus used for user data. ECC_TEST = OFF:
PAYLOAD_WIDTH = DATA_WIDTH

ECC_TEST = ON:
PAYLOAD_WIDTH = DQ_WIDTH

DEBUG_PORT This option enables debug signals/control. “ON”
“OFF”

Table 1-88: Virtex-6 FPGA Memory Solution Configuration Parameters (Cont’d)

Parameter Description Options

http://www.xilinx.com

134 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

The parameters listed in Table 1-89 depend on the selected memory clock frequency,
memory device, memory configuration, and FPGA speed grade. The parameter name in
EDK differs slightly and is listed as the name in parentheses. If the parameter name does
not have an equivalent EDK parameter name, no name is listed in parentheses. The values
for these parameters are embedded in the memc_ui_top IP core and should not be
modified from the user’s top level. Xilinx strongly recommends that users rerun the MIG
tool for different configurations.

TCQ This is the clock-to-Q delay for simulation
purposes.

(The value is in picoseconds.)

tCK (C_TCK) This is the memory tCK clock period (ps). The value, in picoseconds, is based on
the selected frequency in the MIG tool.

MEM_ADDR_ORDER
(C_MEM_ADDR_ORDER)

This option selects the address mapping scheme
between the User Interface address bus and
physical memory row, bank, and column.

“BANK_ROW_COLUMN”
“ROW_BANK_COLUMN”

Notes:
1. The lower limit (maximum frequency) is pending characterization.
2. SIM_BYPASS_INIT_CAL is used to reduce simulation time by bypassing and/or abbreviating the initial power-up and calibration

sequence. Setting this parameter to either “SKIP” or “FAST” overrides the user-specified value of four other parameters,
SIM_INIT_OPTION, SIM_CAL_OPTION, WRLVL, and PHASE_DETECT, and causes the initialization and calibration sequence to
be shortened. The user can also achieve the same result by setting SIM_BYPASS_INIT_CAL to “OFF”, and individually setting the
value of these four parameters.
Setting SIM_BYPASS_INIT_CAL to “FAST” bypasses the memory power-up initialization and performs an abbreviated calibration
sequence. Setting SIM_BYPASS_INIT_CAL to “FAST” causes these parameters to be overridden to these values:
 - SIM_INIT_OPTION = “SKIP_PU_DLY”
 - SIM_CAL_OPTION = “FAST_CAL”
 - WRLVL and PHASE_DETECT retain their user-specified settings
Setting SIM_BYPASS_INIT_CAL to “SKIP” bypasses the memory power-up initialization, skips the calibration sequence, and
disables blocks within the PHY. The “SKIP” setting causes calibration to be skipped and fixes various timing relationships between
the FPGA and memory. As a result, the “SKIP” setting should only be used in a behavioral simulation environment that does not
assert additional propagation delays (for example, to model PCB trace delays between the FPGA and memory). Setting
SIM_BYPASS_INIT_CAL to “SKIP” causes these parameters to be overridden to these values:
 - SIM_INIT_OPTION = “SKIP_PU_DLY”
 - SIM_CAL_OPTION = “SKIP_CAL”
 - WRLVL = “OFF”
 - PHASE_DETECT = “OFF”
Setting SIM_BYPASS_INIT_CAL to “OFF” causes the above four parameters to retain their user-specified values.
SIM_BYPASS_INIT_CAL should be set to “OFF” for implementation, or the core does not function properly. See notes (3) and (4) for
descriptions of the SIM_CAL_OPTION and SIM_INIT_OPTION and parameters.

3. Core initialization during simulation can be greatly reduced by using SIM_CAL_OPTION. Two simulation modes are supported.
Setting SIM_CAL_OPTION to FAST_CAL causes read calibration to occur on only one bit per memory device. This is then used
across the remaining data bits. When SIM_CAL_OPTION is set to SKIP_CAL, no read calibration occurs, and the incoming clocks
and data are assumed to be aligned. SIM_CAL_OPTION should be set to NONE for implementation, or the core does not function
properly.

4. SIM_INIT_OPTION can be used to reduce simulation time by bypassing some or all of the memory initialization procedure.
SKIP_PU_DLY is the preferred setting for both DDR2 and DDR3 SDRAMs.

5. When set to NORM, ORDERING enables the reordering algorithm in the memory controller. When set to STRICT, request
reordering is disabled, which greatly limits throughput to the external memory device. However, it can be helpful during initial core
integration because requests are processed in the order received; the user design does not need to keep track of which requests are
pending and which requests have been processed.

Table 1-88: Virtex-6 FPGA Memory Solution Configuration Parameters (Cont’d)

Parameter Description Options

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 135
UG406 October 19, 2011

Customizing the Core

Table 1-89: Embedded Virtex-6 FPGA Memory Solution Configuration Parameters

Parameter Description Options

tFAW (C_TFAW) This is the minimum interval of four active
commands.

This value, in picoseconds, is based on
the device selection in the MIG tool.

tPRDI (C_PRDI) This is the periodic read interval for the read
phase detector.

This value, in picoseconds, is based on
the selected frequency in the MIG tool.

tRRD (C_TRRD) This is the ACTIVE-to-ACTIVE minimum
command period.

This value, in picoseconds, is based on
the device selection in the MIG tool.

tRAS (C_TRAS) This is the minimum
ACTIVE-to-PRECHARGE period for memory.

This value, in picoseconds, is based on
the device selection in the MIG tool.

tRCD (C_TRCD) This is the ACTIVE-to-READ or -WRITE
command delay.

This value, in picoseconds, is based on
the device selection in the MIG tool.

tREFI (C_TREFI) This is the average periodic refresh interval for
memory.

This value, in picoseconds, is based on
the device selection in the MIG tool.

tRFC (C_RFC) This is the REFRESH-to-ACTIVE or
REFRESH-to-REFRESH command interval.

This value, in picoseconds, is based on
the device selection in the MIG tool.

tRP (C_TRP) This is the PRECHARGE command period. This value, in picoseconds, is based on
the device selection in the MIG tool.

tRTP (C_TRTP) This is the READ-to-PRECHARGE command
delay.

This value, in picoseconds, is based on
the device selection in the MIG tool.

tWTR (C_TWTR) This is the WRITE-to-READ command delay. This value, in picoseconds, is based on
the device selection in the MIG tool.

tZQI (C_TZQI) This is the timing window to perform the
ZQCL command in DDR3 SDRAM.

This value, in CK, is based on the
device selection in the MIG tool.

tZQCS (C_TZQCS) This is the timing window to perform the
ZQCS command in DDR3 SDRAM.

This value, in CK, is based on the
device selection in the MIG tool.

nAL This is the additive latency in memory clock
cycles.

0

CL (C_CL) This is the read CAS latency. The available
option is frequency dependent in the MIG tool.

DDR3: 5, 6, 7, 8, 9

CWL (C_CWL) This is the write CAS latency. The available
option is frequency dependent in the MIG tool.

DDR3: 5, 6, 7, 8

BURST_TYPE
(C_BURST_TYPE)

This is an option for the ordering of accesses
within a burst.

“Sequential”
“Interleaved”

IBUF_LPWR_MODE This option enables or disables the low-power
mode for the input buffers.

“ON”
“OFF”

IODELAY_HP_MODE
(C_IODELAY_HP_MODE)

This option enables or disables the IODELAY
high-performance mode.

“ON”
”OFF”

USE_DM_PORT
(C_USE_DM_PORT)

This is the enable data mask option used
during memory write operations.

1: Enable
0: Disable

CAL_WIDTH
(C_CAL_WIDTH)

This parameter defines how many DRAM
ranks are calibrated. For the current design,
only single-rank is supported.

“HALF”

http://www.xilinx.com

136 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

CK_WIDTH (C_CK_WIDTH) This is the number of CK/CK# outputs to
memory.

DQ_CNT_WIDTH This is ceil(log2(DQ_WIDTH)).

DRAM_TYPE
(C_DRAM_TYPE)

This is the supported memory standard for the
memory controller.

“DDR2”
“DDR3”

DRAM_WIDTH This is the DQ bus width per DRAM
component.

AL This is the additive latency. 0

nBANK_MACHS
(C_NBANK_MACHS)

This is the number of bank machines. A given
bank machine manages a single DRAM bank
at any given time.

2, 3, 4, 5, 6, 7, 8

DATA_BUF_ADDR_WIDTH This is the bus width of the request tag passed
to the memory controller.

4

DATA_BUF_OFFSET_WIDTH This is the bus width of the data offset that
depends on nCK_PER_CLK and the
maximum burst length.

0, 1

SLOT_0_CONFIG
(C_SLOT_0_CONFIG)

This is the rank mapping. Single-rank setting: 8'b0000_0001
Dual-rank setting: 8'b0000_0011

ECC (C_ECC) This is the error correction code, available in
72-bit and 144-bit data width configurations.

72, 144

RANKS (C_RANKS) This is the number of ranks.

DATA_WIDTH This parameter determines the write data
mask width and depends on whether or not
ECC is enabled.

ECC = ON:
DATA_WIDTH = DQ_WIDTH +
ECC_WIDTH

ECC = OFF:
DATA_WIDTH = DQ_WIDTH

APP_DATA_WIDTH This UI_INTFC parameter specifies the
payload data width in the UI.

APP_DATA_WIDTH =
PAYLOAD_WIDTH × 4

APP_MASK_WIDTH This UI_INTFC parameter specifies the
payload mask width in the UI.

Table 1-89: Embedded Virtex-6 FPGA Memory Solution Configuration Parameters (Cont’d)

Parameter Description Options

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 137
UG406 October 19, 2011

Design Guidelines

Design Guidelines
Guidelines for DDR3 and DDR2 SDRAM designs are covered in this section.

DDR3 SDRAM
This section describes guidelines for DDR3 SDRAM designs, including bank selection, pin
allocation, pin assignments, termination, I/O standards, and trace lengths.

Design Rules

Memory types, memory parts, and data widths are restricted based on the selected FPGA,
FPGA speed grade, and the design frequency. The maximum frequency of the design for
commercial grade parts is:

• 400 MHz (-1 speed grade devices).

• 533 MHz (-2 and -3 speed grade devices).

• 333 MHz (-1 speed grade CXT devices).

• 400 MHz (-2 speed grade CXT devices).

• 400 MHz (low-power Virtex-6 devices).

Note: The final maximum frequency will be determined after characterization.

For frequencies above 333 MHz, only data widths up to 72 bits are allowed. For
frequencies of 333 MHz and below, data widths up to 144 bits are allowed. The listed
frequency ranges are preliminary values. The final frequency ranges are subject to
characterization results.

DDR3 Component PCB Routing

Fly-by routing topology is required for the clock, address, and control lines. Fly-by means
that this group of lines is routed in a daisy-chain fashion and terminated appropriately at
the end of the line. The trace length of each signal within this group to a given component
must be matched. The controller uses write leveling to account for the different skews
between components. This technique uses fewer FPGA pins because signals do not have to
be replicated.

Pin Assignments

The MIG tool generates pin assignments for a memory interface based on physical layer
rules.

Bank and Pin Selection Guides for DDR3 Designs

The MIG tool selects address/control banks, data banks, and pin allocations that are
restricted to the rules outlined below.

Bank Selection Rules

The bank selection rules are:

• Address/control groups can be selected only in the inner column banks.

• The first bank selected for the address/control group has CK[0] and CK#[0] pins.

• Banks consisting of CK[0] and CK#[0] have MMCMs utilized in the H-row.

http://www.xilinx.com

138 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

• For design frequencies higher than 400 MHz, only inner column banks are allowed for
data group selection. For design frequencies 400 MHz and below, both inner and
outer column banks are allowed for data group selection.

• Only inner or outer column banks are allowed for selection.

• Inner and outer column banks that reside one row above, one row below, and on the
same row of banks consisting of the CK[0] and CK#[0] pins are enabled for data group
pin selection. This restriction is represented by a boundary box called the vicinity box.

• The system clock group can only be selected in the banks consisting of GC pins or in
the inner column banks that are in the same H-row of allocated MMCMs.

• The system clock group and the rest of the design group pins (address/control group,
data group, and system control group) cannot coexist in the same bank due to
different voltage standards.

• A master bank must be selected for each column if DCI cascade is to be used.

• The system clock group bank cannot be selected as a master bank.

• One MMCM is always used for the design.

Pin Allocation Rules

The pin allocation rules are:

• Address/Control Group:

• This group consists of A, BA, CK, CK#, CKE, CS#, RAS#, CAS#, WE#, ODT, and
RESET# memory signals.

• Only inner column banks are allowed for selection.

• The memory clock signals (CK and CK#) are allocated to the differential pair pins
(P-N pair).

• The VRN/VRP pins are utilized for pin allocation. In this case, DCI cascading is
applied to support the DCI standard on address/control group signals.

• The VREF pins are utilized for pin allocation.

• For DIMM designs, this group also includes sda and scl pins.

• Data Group:

• The DQS group consists of the DQ and DM memory pins and their corresponding
DQS and DQS# pins.

• The DQS and DQS# pins are allocated to a P-N pair.

• Each DQS group in a bank is associated with a CC-P pin reserved for BUFIO.

• In a column of banks allocated with data group pins, at least one bank has a CC-P
pin reserved for BUFR.

• If VRN/VRP pins are utilized for pin allocation in a bank, the DCI cascading
feature must be applied to support DCI. In this case, a master bank must be
selected.

• System Clock Group:

• This group consists of:

- Design clocks: sys_clk_p, sys_clk_n (differential), or sys_clk (single-ended).

- Reference clocks: clk_ref_p, clk_ref_n (differential), or clk_ref (single-ended).

- Pins: sys_rst, error, and phy_init_done.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 139
UG406 October 19, 2011

Design Guidelines

- For ECC enabled designs, this group also includes the ECC
app_ecc_multiple_err error pin.

• Only inner column banks are allowed for selection.

• The CC pins are allocated for the system clock group if the system clock bank is in
the address/control bank H-row of allocated MMCMs.

• The GC pins are allocated for the system clock group if the system clock bank is
any one of banks 24, 25, 34, or 35.

• This group is associated with the 2.5V I/O standard.

• Master Bank:

• Except for the system clock bank, only banks within the vicinity of a given
column of banks can be selected as a master bank.

• A master bank always has unused VRN/VRP pins. Thus, in a given bank,
VRN/VRP pins are reserved if they are selected in a master bank.

• A master bank should always have at least one SSTL15_II_DCI I/O standard
input pin. If not, a dummy input pin is allocated with the SSTL15_II_DCI I/O
standard.

• All data group banks in a given column act as slave banks if a master bank is
selected in that column. The same is listed in the generated UCF.

Data/Strobe/Mask Span Allocation Rules

When generating or verifying the data/strobe pinout of a high-performance
Virtex-6 FPGA DDR3 design, the MIG tool requires that the data, strobe, and mask pins in
a given DQS group be kept not only in the same I/O bank, but also within a given number
of “IOB clock delay intervals” within that bank to minimize the effect of clock skew on I/O
timing. Virtex-6 FPGA DDR3 designs operating at 400 MHz or below do not need to
adhere to these IOB clock delay interval limit requirements; however, they are still subject
to the rule that DQ/DQS/DM for a given DQS group be kept in the same I/O bank.

An IOB clock delay interval is defined as the difference in clock arrival time at two IOBs
driven by the same clock network. BUFIOs are routed to the 40 I/Os in a bank such that the
clock tree enters the bank and connects to the two middle IOBs in that bank first. The clock
tree then travels up and down from that point. Using the nomenclature used in both a
PARTGEN-generated package file and fpga_editor, the first two I/Os to receive the clock
are IO_L9N_MRCC_X and IO_L10P_MRCC_X. The last two I/Os to receive a clock are
IO_L0P_X and IO_L19N_X—these are at the two extreme ends of the clock tree. The arrival
time of the clock to IO_9N_MRCC_X and IO_L10P_MRCC_X is roughly the same, while
the arrival time to IO_L0P_X and IO_L19N_X is roughly the same.

Data/Strobe/Mask span allocation rules for Virtex-6 FPGA designs operating above
400 MHz are:

• DQS/DQS# can be no more than 7 IOB clock delay intervals from their corresponding
DQ bits. This requirement is also extended to apply to the corresponding DM output.

• All data/strobe/masks in a single DQS group can span no more than 12 IOB clock
delay intervals.

http://www.xilinx.com

140 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

BUFR Allocation Rules

The BUFR allocation rules are:

• If data group pins are allocated in a column of banks, at least one bank must have a
CC-P pin reserved for BUFR.

• In a column of banks, if only one bank is allocated with data group pins, the same
bank has a CC-P pin reserved for BUFR.

• The above rule is valid for x8 and x16 part designs.

• For x4 part designs, to accommodate more data width in a single bank, BUFR is
always allocated in the bank below or above the selected data group bank.

• In a column of banks, if two consecutive banks are allocated with data group pins, the
data group bank (address/control bank row) has a CC-P pin reserved for BUFR.

• In a column of banks, if three consecutive banks are allocated with data group pins,
the middle bank allocated for the data group pins has a CC-P pin reserved for BUFR.

• In a column of banks, if two banks are allocated with data group pins and the
intervening bank (address/control bank row) is left idle, a CC-P pin is reserved in the
same idle bank.

• When the data group placement uses two rows of banks, if one bank row is allocated
with data group pins and the other bank row is allocated with non-data group pins
(address/control group, system control group, or system clock group) both in one
column, the non-data group bank row has a CC-P pin reserved for BUFR.

• When the data group placement uses three rows of banks, if at least one bank row is
allocated with data group pins and the middle bank row (address/control bank row)
is allocated with non-data group pins (address/control group, system control group,
or system clock group) all in one column, the non-data group bank row has a CC-P
pin reserved for BUFR.

For any group, adhere to this priority order for pin allocation in banks:

• In a given column of banks, the preference of pin allocation in banks is in descending
order. A top-down order of banks is followed.

• In a given bank, pins are allocated in top-down order.

• The priority order of columns is:

• Inner-left column

• Inner-right column

• Outer-left column

• Outer-right column

To optimize routing for the PCB during layout (to avoid crossing of nets or buses), it might
be necessary to swap pin locations depending on the number of layers available and the
interface topology.

Any changes to the pin assignments require modifications to the UCF provided by the
MIG tool and might also require changes to the source code. These rules apply when
changing pin assignments after the MIG tool has generated a design:

• The address and control pin assignments can be swapped with each other as needed.

• DQ and DM pin assignments within the same byte can be swapped with each other.
The affected bits require a change to the pin assignment LOC constraints in the UCF.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 141
UG406 October 19, 2011

Design Guidelines

Configuration

The UCF contains timing, pin, and I/O standard information. The sys_clk constraint sets
the operating frequency of the interface and is set through the MIG GUI. The MIG GUI
must be rerun if this needs to be altered, because other internal parameters are affected. For
example:

NET "sys_clk_p" TNM_NET = TNM_sys_clk;
TIMESPEC "TS_sys_clk" = PERIOD "TNM_sys_clk" 1.875 ns;

The clk_ref constraint sets the frequency for the IODELAY reference clock, which is
typically 200 MHz. For example:

NET "clk_ref_p" TNM_NET = TNM_clk_ref;
TIMESPEC "TS_clk_ref" = PERIOD "TNM_clk_ref" 5 ns;

The I/O standards are set appropriately for the DDR3 interface with SSTL15,
SSTL15_T_DCI, or DIFF_SSTL15_T_DCI, as appropriate. LVDS_25 is used for the system
clock (sys_clk) and I/O delay reference clock (clk_ref). These standards can be changed, as
required, for the system configuration. These signals are brought out to the top level for
system connection:

• sys_rst: This is the main system reset.

• phy_init_done: This signal indicates when the internal calibration is done and that the
interface is ready for use.

• error: This signal is generated by the example design’s traffic generator if read data
does not match the write data.

These signals are all set to LVCMOS25 and can be altered as needed for the system design.
They can be generated and used internally instead of being brought out to pins.

The SCL and SDA pins are used to access the Serial Presence Detect (SPD) EEPROM
located on the DIMM. These pins are not used in the current memory interface designs and
are reserved for future use. The SCL and SDA pins can be used for other purposes if the
user determines that access to the SPD is not required. The DDR3 RDIMM interface uses
the default values for the register on the RDIMM. This is sufficient for the current set of
RDIMM parts that this interface supports. If an RDIMM is used that requires specific
register programming information to be extracted from the SPD, and this register
programming information is not available statically on the data sheet, then the SCL and
SDA pins are required. This is not expected to occur frequently.

This interface contains several pins that must be reserved for internal use and cannot be
used externally for any other purpose. These pins are used for the internal BUFR, BUFIO,
and clock phase monitor and are identified in the UCF as CONFIG PROHIBIT and LOC
constraints. Additional information is listed in the UCF.

Termination

These rules apply to termination for DDR3 SDRAM:

• Simulation (IBIS or other) is highly recommended. The loading of address (A, BA),
command (RAS_N, CAS_N, WE_N), and control (CS_N, ODT) signals depends on
various factors, such as speed requirements, termination topology, use of unbuffered
DIMMs, and multiple rank DIMMs, and can be a limiting factor in reaching a
performance target.

• Unidirectional signals are to be terminated with the memory device’s internal
termination or a pull-up of 50Ω to VTT at the load (Figure 1-73). A split 100Ω
termination to VCCO and a 100Ω termination to GND can be used (Figure 1-74), but

http://www.xilinx.com

142 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

takes more power. For bidirectional signals, the termination is needed at both ends of
the signal (DCI/ODT or external termination).

• Differential signals should be terminated with the memory device’s internal
termination or a 100Ω differential termination at the load (Figure 1-75). For
bidirectional signals, termination is needed at both ends of the signal (DCI/ODT or
external termination).

• All termination must be placed as close to the load as possible. The termination can be
placed before or after the load provided that the termination is placed within a small
distance of the load pin. The allowable distance can be determined by simulation.

• DCI can be used at the FPGA as long as the DCI rules such as VRN/VRP are followed.

• The RESET and CKE signals are not terminated. These signals should be pulled down
during memory initialization with a 4.7 kΩ resistor connected to GND.

• ODT, which terminates a signal at the memory, and DCI, which terminates a signal at
the FPGA, are required. The MIG tool should be used to specify the configuration of
the memory system for setting the mode register properly. Refer to Micron technical
note TN-47-01 [Ref 5] for additional details on ODT.

• ODT applies to the DQ, DQS, and DM signals only. If ODT is used, the mode register
must be set appropriately to enable ODT at the memory.

X-Ref Target - Figure 1-73

Figure 1-73: 50Ω Termination to VTT

X-Ref Target - Figure 1-74

Figure 1-74: 100Ω Split Termination to VCCO and GND

X-Ref Target - Figure 1-75

Figure 1-75: 100Ω Differential Termination

UG406_c1_57_031609

ZQ =
50Ω

RT = 50Ω

VTT

LoadSource

UG406_c1_58_031609

ZQ =
50Ω

2 x ZQ =
100Ω

2 x ZQ =
100Ω

VCCO

LoadSource

UG406_c1_59_031609

ZQ =
50Ω

2 x ZQ =
100Ω

Load_PSource_P

ZQ =
50Ω Load_NSource_N

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 143
UG406 October 19, 2011

Design Guidelines

• DM should be pulled to GND if ODT is used but DM is not driven by the FPGA (for
scenarios where the Data Mask not used or disabled).

I/O Standards

These rules apply to the I/O standard selection for DDR3 SDRAMs:

• Designs generated by the MIG tool use the SSTL15_T_DCI and DIFF_SSTL15_T_DCI
standards for all bidirectional I/O (DQ, DQS).

• The SSTL15 and DIFF_SSTL15 standards are used for unidirectional outputs, such as
control/address, and forward memory clocks.

The MIG tool creates the UCF using the appropriate standard based on input from the
GUI.

Trace Lengths

The trace lengths described here are for high-speed operation and can be relaxed
depending on the target bandwidth requirements of the application. The package delay
should be included when determining the effective trace length. The most accurate and
recommended method for determining the delay is to use the L and C values for each pin
from the IBIS models. The delay value is determined as the square root of (L × C).
Alternatively, a less accurate method is to use the PARTGen utility.

The PARTGen utility generates a PKG file that contains the package trace length in microns
(µm) for every pin of the device under consideration. For example, to obtain the package
delay information for a Virtex-6 FPGA LX240T-FF1156, this command should be issued:

partgen -v xc6vlx240tff1156

This generates a file named xc6vlx240tff1156.pkg in the current directory with
package trace length information for each pin in microns. A typical 6.5 fs/micron
(6.5 ps/mm) conversion formula should be used to obtain the corresponding electrical
propagation delay. While applying specific trace-matching guidelines for the DDR2
SDRAM interface, this additional package delay term should be considered for the overall
electrical propagation delay. Different die in the same package might have different delays
for the same package pin. If this is expected, the values should be averaged appropriately.
This decreases the maximum possible performance for the target device. These rules
indicate the maximum skew between DDR3 SDRAM signals:

• The maximum skew between any DQ and its associated DQS/DQS# should be ±5 ps.

• The maximum skew between any address and control signals and the corresponding
CK/CK# should be ±25 ps.

• DQ to DQS matching can be relaxed by the change in clock period as the frequency is
lowered from the maximum. For example, the maximum supported frequency for the
-2 speed grade part is 533 MHz for the center columns. The bit time at this frequency
is 937.5 ps. The DQ to DQS PCB skew is allowed to be ±5 ps. If this design operated at
400 MHz, the bit time is 1250 ps. The change in period is 1250 minus 937.5 or 312.5 ps.
Half of this value is 156 ps. Thus the new skew allowed is ±(156 + 5) or ±161 ps.

Write leveling is required for both DIMMs and components. Designs using multiple
components should arrange the components in a fly-by routing topology similar to a
DIMM where the address, control, and clocks are shared between the components and the
signal arrives at each component at a different time. The data bus routing for each
component should be as short as possible. Each signal should be routed on a single PCB
layer to minimize discontinuities caused by additional vias.

http://www.xilinx.com

144 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

Noise and DLL Lock

System noise should be kept to a minimum while the DDR3 SDRAM is locking its
delay-locked loop (DLL). The FPGA system should be kept as quiet as possible until the
phy_init_done signal is asserted, indicating that the DLL lock and interface calibration are
completed. Failure to do so might result in improper calibration and data corruption.

DDR2 SDRAM
This section describes guidelines for DDR2 SDRAM designs, including bank selection, pin
allocation, pin assignments, termination, I/O standards, and trace lengths.

Design Rules

Memory types, memory parts, and data widths are restricted based on the selected FPGA,
FPGA speed grade, and the design frequency. The maximum frequency of the design for
commercial grade parts is:

• 400 MHz (-1, -2, and -3 speed grade devices).

• 333 MHz (-1 and -2 speed grade CXT devices).

• 300 MHz (low-power Virtex-6 devices).

Note: The final maximum frequency will be determined after characterization.

For frequencies above 333 MHz, only data widths up to 72 bits are allowed. For
frequencies of 333 MHz and below, data widths up to 144 bits are allowed. The listed
frequency ranges are preliminary values. The final frequency ranges are subject to
characterization results.

Pin Assignments

The MIG tool generates pin assignments for a memory interface based on physical layer
rules.

Bank and Pin Selection Guides for DDR2 Designs

The MIG tool selects address/control banks, data banks, and pin allocations that are
restricted to the rules outlined below.

Bank Selection Rules

The bank selection rules are:

• Address/control groups can be selected only in the inner column banks.

• The first bank selected for the address/control group has CK[0] and CK#[0] pins.

• Banks consisting of CK[0] and CK#[0] have MMCMs utilized in the H-row.

• For design frequencies higher than 333 MHz, only inner column banks are allowed for
data group selection. For design frequencies of 333 MHz and below, both inner and
outer column banks are allowed for data group selection.

• Only inner or outer column banks are allowed for selection.

• Inner and outer column banks that reside one row above, one row below, and on the
same row of banks consisting of the CK[0] and CK#[0] pins are enabled for data group
pin selection. This restriction is represented by a boundary box called the vicinity box.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 145
UG406 October 19, 2011

Design Guidelines

• The system clock group can only be selected in the banks consisting of GC pins or in
the inner column banks that are in the same H-row of allocated MMCMs.

• The system clock group and the rest of the design group pins (address/control group,
data group, and system control group) cannot coexist in the same bank due to
different voltage standards.

• A master bank must be selected for each column if DCI cascade is to be used.

• The system clock group bank cannot be selected as a master bank.

• One MMCM is always used for the design.

Pin Allocation Rules

The pin allocation rules are:

• Address/Control Group:

• This group consists of A, BA, CK, CK#, CKE, CS#, RAS#, CAS#, WE#, ODT, and
RESET# memory signals.

• Only inner column banks are allowed for selection.

• The memory clock signals (CK and CK#) are allocated to the differential pair pins
(P-N pair).

• The VRN/VRP pins are utilized for pin allocation. In this case, DCI cascading is
applied to support the DCI standard on address/control group signals.

• The VREF pins are utilized for pin allocation.

• For DIMM designs, this group also includes sda and scl pins.

• Data Group:

• The DQS group consists of the DQ and DM memory pins and their corresponding
DQS and DQS# pins.

• The DQS and DQS# pins are allocated to a P-N pair.

• Each DQS group in a bank is associated with a CC-P pin reserved for BUFIO.

• In a column of banks allocated with data group pins, at least one bank has a CC-P
pin reserved for BUFR.

• If VRN/VRP pins are utilized for pin allocation in a bank, the DCI cascading
feature must be applied to support DCI. In this case, a master bank must be
selected.

• System Clock Group:

• This group consists of:

- Design clocks: sys_clk_p, sys_clk_n (differential), or sys_clk (single-ended).

- Reference clocks: clk_ref_p, clk_ref_n (differential), or clk_ref (single-ended).

- Pins: sys_rst, error, and phy_init_done.

- For ECC enabled designs, this group also includes the ECC
app_ecc_multiple_err error pin.

• Only inner column banks are allowed for selection.

• The CC pins are allocated for the system clock group if the system clock bank is in
the address/control bank H-row of allocated MMCMs.

• The GC pins are allocated for the system clock group if the system clock bank is
any one of banks 24, 25, 34, or 35.

• This group is associated with the 2.5V I/O standard.

http://www.xilinx.com

146 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

• Master Bank:

• Except for the system clock bank, only banks within the vicinity of a given
column of banks can be selected as a master bank.

• A master bank always has unused VRN/VRP pins. Thus, in a given bank,
VRN/VRP pins are reserved if they are selected in a master bank.

• A master bank should always have at least one SSTL18_II_DCI I/O standard
input pin. If not, a dummy input pin is allocated with the SSTL18_II_DCI I/O
standard.

• All data group banks in a given column act as slave banks if a master bank is
selected in that column. The same is listed in the generated UCF.

BUFR Allocation Rules

The BUFR allocation rules are:

• If data group pins are allocated in a column of banks, at least one bank must have a
CC-P pin reserved for BUFR.

• In a column of banks, if only one bank is allocated with data group pins, the same
bank has a CC-P pin reserved for BUFR.

• The above rule is valid for x8 and x16 part designs.

• For x4 part designs, to accommodate more data width in a single bank, BUFR is
always allocated in the bank below or above the selected data group bank.

• In a column of banks, if two consecutive banks are allocated with data group pins, the
data group bank (address/control bank row) has a CC-P pin reserved for BUFR.

• In a column of banks, if three consecutive banks are allocated with data group pins,
the middle bank allocated for the data group pins has a CC-P pin reserved for BUFR.

• In a column of banks, if two banks are allocated with data group pins and the
intervening bank (address/control bank row) is left idle, a CC-P pin is reserved in the
same idle bank.

• When the data group placement uses two rows of banks, if one bank row is allocated
with data group pins and the other bank row is allocated with non-data group pins
(address/control group, system control group, or system clock group) both in one
column, the non-data group bank row has a CC-P pin reserved for BUFR.

• When the data group placement uses three rows of banks, if at least one bank row is
allocated with data group pins and the middle bank row (address/control bank row)
is allocated with non-data group pins (address/control group, system control group,
or system clock group) all in one column, the non-data group bank row has a CC-P
pin reserved for BUFR.

For any group, adhere to this priority order for pin allocation in banks:

• In a given column of banks, the preference of pin allocation in banks is in descending
order. A top-down order of banks is followed.

• In a given bank, pins are allocated in top-down order.

• The priority order of columns is:

• Inner-left column

• Inner-right column

• Outer-left column

• Outer-right column

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 147
UG406 October 19, 2011

Design Guidelines

Selecting RTT (Nominal) Value of ODT

The user should select internal termination resistance of the memory module for DQ,
DQS/DQS#, LDQS/LDQS#, UDQS/UDQS# and UDM/LDM signals on the DIMM. This
improves the signal integrity of the memory channel.

To optimize routing for the PCB during layout (to avoid crossing of nets or buses), it might
be necessary to swap pin locations depending on the number of layers available and the
interface topology.

Any changes to the pin assignments require modifications to the UCF provided by the
MIG tool and might also require changes to the source code. These rules apply when
changing pin assignments after the MIG tool has generated a design:

• The address and control pin assignments can be swapped with each other as needed.

• DQ and DM pin assignments within the same byte can be swapped with each other.
The affected bits require a change to the pin assignment LOC constraints in the UCF.

The MIG tool supports the Single Rank and Dual Rank parts with single slot scenarios only.
Table 1-90 and Table 1-91 refer to the simulation ODT matrix of MIG supported scenarios
for writes and reads, respectively.

Configuration

The UCF contains timing, pin, and I/O standard information. The sys_clk constraint sets
the operating frequency of the interface and is set through the MIG GUI. The MIG GUI

Table 1-90: 2-Slot Simulation ODT Matrix for Writes

Slot 1 Slot 2 Write to
Controller

ODT

Slot 1 Slot 2

Rank 1 Rank 2 Rank 1 Rank 2

DR(1) Empty Slot 1 OFF 120Ω ODT OFF na(2) na

Empty DR Slot 2 OFF na na 120Ω ODT OFF

SR(3) Empty Slot 1 OFF 120Ω na na na

Empty SR Slot 2 OFF na na 120Ω na

Notes:
1. DR: Dual Rank.
2. na: not applicable.
3. SR: Single Rank.

Table 1-91: 2-Slot Simulation ODT Matrix for Reads

Slot 1 Slot 2 Write to
Controller

ODT

Slot 1 Slot 2

Rank 1 Rank 2 Rank 1 Rank 2

DR(1) Empty Slot 1 60Ω ODT OFF ODT OFF na(2) na

Empty DR Slot 2 60Ω na na ODT OFF ODT OFF

SR(3) Empty Slot 1 60Ω ODT OFF na na na

Empty SR Slot 2 60Ω na na ODT OFF na

Notes:
1. DR: Dual Rank.
2. na: not applicable.
3. SR: Single Rank.

http://www.xilinx.com

148 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

must be rerun if this needs to be altered, as other internal parameters are affected. For
example:

NET "sys_clk_p" TNM_NET = TNM_sys_clk;
TIMESPEC "TS_sys_clk" = PERIOD "TNM_sys_clk" 1.875 ns;

The clk_ref constraint sets the frequency for the IODELAY reference clock which is
typically 200 MHz. For example:

NET "clk_ref_p" TNM_NET = TNM_clk_ref;
TIMESPEC "TS_clk_ref" = PERIOD "TNM_clk_ref" 5 ns;

The I/O standards are set appropriately for the DDR2 interface with the SSTL18 variants as
determined through the MIG GUI. LVDS_25 is used for the system clock (sys_clk) and I/O
delay reference clock (clk_ref). These standards can be changed, as required, for the system
configuration. These signals are brought out to the top level for system connection:

• sys_rst: This is the main system reset.

• phy_init_done: This signal indicates when the internal calibration is done and that the
interface is ready for use.

• error: This signal is generated by the example design's traffic generator if read data
does not match the write data.

These signals are all set to LVCMOS25 and can be altered as needed for the system design.
They can be generated and used internally instead of being brought out to pins.

The SCL and SDA pins are used to access the SPD EEPROM located on the DIMM. These
pins are not used in the current memory interface designs and are reserved for future use.
The SCL and SDA pins can be used for other purposes if the user determines that access to
the SPD is not required. The DDR3 RDIMM interface uses the default values for the
register on the RDIMM. This is sufficient for the current set of RDIMM parts that this
interface supports. If an RDIMM is used that requires specific register programming
information to be extracted from the SPD, and this register programming information is
not available statically on the data sheet, then the SCL and SDA pins are required. This is
not expected to occur frequently.

This interface contains several pins that must be reserved for internal use and cannot be
used externally for any other purpose. These pins are used for the internal BUFR, BUFIO,
and clock phase monitor and are identified in the UCF as CONFIG PROHIBIT and LOC
constraints. Additional information is listed in the UCF.

Termination

These rules apply to termination for DDR2 SDRAM:

• Simulation (using IBIS or other) is highly recommended. The loading of address (A,
BA), command (RAS_N, CAS_N, WE_N), and control (CS_N, ODT) signals depend
on various factors, such as speed requirements, termination topology, use of
unbuffered DIMMs, and multiple rank DIMMs, and can be a limiting factor in
reaching a performance target.

• Unidirectional signals should be terminated with the memory device’s internal
termination or a pull-up of 50Ω to VTT at the load (Figure 1-73, page 142). A split 100Ω
termination to VCCO and a 100Ω termination to GND can be used (Figure 1-74,
page 142), but takes more power. For bidirectional signals, the termination is needed
at both ends of the signal (DCI/ODT or external termination).

• Differential signals should be terminated with the memory device’s internal
termination or a 100Ω differential termination at the load (Figure 1-75, page 142). For

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 149
UG406 October 19, 2011

Design Guidelines

bidirectional signals, termination is needed at both ends of the signal (DCI/ODT or
external termination).

• All termination must be placed as close to the load as possible. The termination can be
placed before or after the load provided that the termination is placed within a small
distance of the load pin. The allowable distance can be determined by simulation.

• DCI can be used at the FPGA as long as the DCI rules such as VRN/VRP are followed.

• For DIMMs, the CK signals should be terminated by a 5 pF capacitor between the two
legs of the differential signal instead of the 100Ω resistor termination (Figure 1-76).
This is because the CK signals are already terminated on each DIMM.

• The ODT and CKE signals are not terminated. These signals should be pulled down
during memory initialization with a 4.7 kΩ resistor connected to GND.

• ODT applies to the DQ/DQS/DM signals only. If ODT is used, the Mode register
must be set appropriately in the RTL design. DM should be pulled to GND if ODT is
used but DM is not driven by the FPGA (for scenarios where the Data Mask not used
or disabled). To save board space, DCI, which terminates a signal at the FPGA, and
ODT, which terminates a signal at the memory can be used to minimize the number of
external resistors on the board.

I/O Standards

These rules apply to the I/O standard selection for DDR2 SDRAMs:

• Designs generated by the MIG tool use the SSTL18_II I/O standard by default for all
memory interface signals. When DCI is selected in the MIG tool, DCI for SSTL18_II is
applied on input, output, and in-out memory interface signals.

• The SSTL18_I/II standards can be selected from the MIG tool. When SSTL18_I is
selected, the I/O standard for bidirectional signals remains SSTL18_II.

• When DCI is selected in the MIG tool for SSTL18_I, the DCI I/O standard is applied
only to memory interface signals that are inputs or in-outs to the FPGA.

Trace Lengths

The trace lengths described here are for high-speed operation and can be relaxed
depending on the target bandwidth requirements of the application. The package delay
should be included when determining the effective trace length. The most accurate and
recommended method for determining the delay is to use the L and C values for each pin
from the IBIS models. The delay value is determined as the square root of (L × C).
Alternatively, a less accurate method is to use the PARTGen utility.

The PARTGen utility generates a PKG file that contains the package trace length in microns
for every pin of the device under consideration. For example, to obtain the package delay
information for a Virtex-6 FPGA LX240T-FF1156, this command should be issued:

partgen -v xc6vlx240tff1156

X-Ref Target - Figure 1-76

Figure 1-76: 5 pF Differential Termination on Clocks

UG406_c1_60_031609

ZQ =
50Ω

5 pF

Load_PCK_P

ZQ =
50Ω Load_NCK_N

http://www.xilinx.com

150 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

This generates a file named xc6vlx240tff1156.pkg in the current directory with
package trace length information for each pin in microns. A typical 6.5 fs/micron
(6.5 ps/mm) conversion formula should be used to obtain the corresponding electrical
propagation delay. While applying specific trace-matching guidelines for the DDR2
SDRAM interface, this additional package delay term should be considered for the overall
electrical propagation delay. Different die in the same package might have different delays
for the same package pin. If this is expected, the values should be averaged appropriately.
This decreases the maximum possible performance for the target device.

These rules indicate the maximum skew between DDR2 SDRAM signals at 400 MHz:

• The maximum skew between any DQ and its associated DQS/DQS# should be
±25 ps.

• The maximum skew between any address and control signals and the corresponding
CK/CK# should be ±50 ps.

• The maximum skew between any DQS/DQS# and CK/CK# should be ±100 ps.

• DQ to DQS matching can be relaxed by the change in clock period as the frequency is
lowered from the maximum. For example, the maximum supported frequency for the
-2 speed grade part is 400 MHz for the center columns. The bit time at this frequency
is 1250 ps. The DQ to DQS PCB skew is allowed to be ±25 ps. If this design operated at
333 MHz, the bit time is 1500 ps. The change in period is 1500 minus 1250, or 250 ps.
Half of this value is 125 ps. Thus the new skew allowed is ±(125 + 25) or ±150 ps.

Noise and DLL Lock

System noise should be kept to a minimum while the DDR3 SDRAM is locking its DLL.
The FPGA system should be kept as quiet as possible until the phy_init_done signal is
asserted, indicating that the DLL lock and interface calibration are completed. Failure to do
so might result in improper calibration and data corruption.

Pin Mapping for x4 RDIMMs
Table 1-92 shows an example pin mapping for x4 DDR2 and DDR3 registered DIMMs
between the memory data sheet and the user constraints file (UCF).

Table 1-92: Pin Mapping for x4 DDR2 DIMMs

Memory Data Sheet MIG UCF

DQ[63:0] DQ[63:0]

CB3 - CB0 DQ[67:64]

CB7 - CB4 DQ[71:68]

DQS0, DQS0 DQS[0], DQS_N[0]

DQS1, DQS1 DQS[2], DQS_N[2]

DQS2, DQS2 DQS[4], DQS_N[4]

DQS3, DQS3 DQS[6], DQS_N[6]

DQS4, DQS4 DQS[8], DQS_N[8]

DQS5, DQS5 DQS[10], DQS_N[10]

DQS6, DQS6 DQS[12], DQS_N[12]

DQS7, DQS7 DQS[14], DQS_N[14]

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 151
UG406 October 19, 2011

Debugging Virtex-6 FPGA DDR2/DDR3 SDRAM Designs

Debugging Virtex-6 FPGA DDR2/DDR3 SDRAM Designs
This section defines a step-by-step debugging procedure to assist in the identification and
resolution of any issues that might arise during each phase of the memory interface design
process.

Introduction
The DDR2 and DDR3 SDRAM memory interfaces in the Virtex-6 FPGA simplify the
challenges associated with memory interface design. However, every application
environment is unique and proper due diligence is required to ensure a robust design.
Careful attention must be given to functional testing through simulation, proper synthesis
and implementation, adherence to PCB layout guidelines, and board verification through
IBIS simulation and signal integrity analysis.

This section defines a step-by-step debugging procedure to assist in the identification and
resolution of any issues that might arise during each phase of the design process. Details
are provided on:

• Functional verification using the UNISIM simulation models

• Design implementation verification

• Board layout verification

• Using the DDR2/DDR3 PHY to debug board-level issues

• General board-level debug techniques

• PHY layer debug port signal descriptions

The two primary issues encountered during verification of a memory interface are:

• Calibration not completing properly

• Data corruption during normal operation

Problems might be seen in simulation, hardware, or both due to various root causes.
Figure 1-77 shows the overall flow for debugging problems associated with these two
general types of issues.

DQS8, DQS8 DQS[16], DQS_N[16]

DQS9, DQS9 DQS[1], DQS_N[1]

DQS10, DQS10 DQS[3], DQS_N[3]

DQS11, DQS11 DQS[5], DQS_N[5]

DQS12, DQS12 DQS[7], DQS_N[7]

DQS13, DQS13 DQS[9], DQS_N[9]

DQS14, DQS14 DQS[11], DQS_N[11]

DQS15, DQS15 DQS[13], DQS_N[13]

DQS16, DQS16 DQS[15], DQS_N[15]

DQS17, DQS17 DQS[17], DQS_N[17]

Table 1-92: Pin Mapping for x4 DDR2 DIMMs (Cont’d)

Memory Data Sheet MIG UCF

http://www.xilinx.com

152 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

Debug Tools
Many tools are available to debug memory interface design issues. This section indicates
which resources are useful for debugging a given situation.

Example Design

Generation of a DDR2 or DDR3 design through the MIG tool produces an example design
and a user design. The example design includes a synthesizable testbench with a traffic
generator that is fully verified in simulation and hardware. This example design can be
used to observe the behavior of the MIG design and can also aid in identifying
board-related problems. See Quick Start Example Design, page 54 for complete details on
the example design. This debug section further describes using the example design to
verify setup of a proper simulation environment and to perform hardware validation.

Debug Signals

The MIG tool includes a Debug Signals Control option on the FPGA Options screen.
Enabling this feature allows calibration, tap delay, and read data signals to be monitored
using the ChipScope analyzer. Selecting this option port maps the debug signals to VIO
modules of the ChipScope analyzer in the design top module. See Getting Started with the
CORE Generator Software, page 13 for details on enabling this debug feature. The debug
port is disabled for functional simulation and can only be enabled if the signals are actively
driven by the user design.

Reference Boards

The ML605 evaluation kit is a Xilinx development board that interfaces to a DDR3
SODIMM. This board can be used to test user designs and analyze board layout.

ChipScope Pro Tool

The ChipScope Pro tool inserts logic analyzer, bus analyzer, and VIO software cores
directly into the design. The ChipScope Pro tool allows the user to set trigger conditions to
capture application and MIG signals in hardware. Captured signals can then be analyzed
through the ChipScope Pro Logic Analyzer tool [Ref 6].

X-Ref Target - Figure 1-77

Figure 1-77: Virtex-6 FPGA DDR2/DDR3 SDRAM Debug Flowchart

UG406_c1_61_071609

Symptoms in Simulation/Hardware

- Calibration Failure
- Data Bit/Byte Corruption/Errors

Simulation Debug

Synthesis/Implementation Debug

Hardware Debug

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 153
UG406 October 19, 2011

Debugging Virtex-6 FPGA DDR2/DDR3 SDRAM Designs

Simulation Debug
Figure 1-78 shows the debug flow for simulation.

Verifying the Simulation Using the Example Design (for Designs with the
Standard User Interface)

The example design generated by the MIG tool includes a simulation testbench,
appropriately set up memory model and parameter file based on memory selection in the
MIG tool, and a ModelSim DO script file. See Quick Start Example Design, page 54 for
detailed steps on running the example design simulation. Successful completion of this
example design simulation verifies a proper simulation environment. This shows that the
simulation tool and Xilinx libraries are set up correctly. For detailed information on setting
up Xilinx libraries, refer to COMPXLIB in the Command Line Tools User Guide [Ref 7] and the
Synthesis and Simulation Design Guide [Ref 8]. For simulator tool support, refer to the
Virtex-6 FPGA Memory Interface Solutions Data Sheet [Ref 9].

A working example design simulation completes memory initialization and runs traffic in
response to the traffic generator stimulus. Successful completion of memory initialization
and calibration results in the assertion of the phy_init_done signal. When this signal is
asserted, the traffic generator takes control and begins executing writes and reads
according to its parameterization. Refer to Quick Start Example Design, page 54 for details
on the available traffic generator data patterns and corresponding top-level parameters.

Table 1-93 and Table 1-94 show the signals and parameters of interest, respectively, during
simulation.

X-Ref Target - Figure 1-78

Figure 1-78: Simulation Debug Flowchart

Verify Successful Simulation Using
Example Design. Identify any Issues with

Simulation Environment

Debug Issues with User Design Simulation

UG406_c1_62_071609

Open WebCase

Table 1-93: Signals of Interest During Simulation

Signal Name Usage

phy_init_done This signal indicates completion of calibration.

error This signal indicates a mismatch between the data written
from the UI and data received during a read on the UI. This
signal is a part of the example design.

app_en This signal should be enabled for the app_addr, app_cmd,
app_sz, and app_hi_pri inputs.

app_cmd This is the command for the current request.

app_addr This is the address for the current request.

app_wdf_data This is the data provided from the UI for write commands.

app_wdf_en This is the enable for data available on app_wdf_data.

http://www.xilinx.com

154 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

The top-level simulation testbench (sim_tb_top.v/vhd) provided with the traffic
generator sets certain parameters to significantly reduce simulation time. When
SIM_BYPASS_INIT_CAL is set to “FAST”, the MIG design skips the initial 200 µs
initialization delay and executes an abbreviated calibration sequence. When
END_ADDRESS is set to 32’h000003FF and PRBS_EADDR_MASK_POS is set to
32’hFFFFFC00, the address range accessed in the memory model is shortened. If the full
address space is to be accessed, the MEM_BITS memory model parameter must be
increased to avoid memory overflow errors. These parameters should only be set to the
above values in the simulation testbench. The top-level MIG design file
(example_top.v/vhd) cannot use any abbreviated values for these parameters in order
for the design to properly initialize, calibrate, and access the full memory array in
hardware. The MIG output properly sets the abbreviated values in the testbench and the
full range of values in the top-level design module.

app_wdf_end This signal indicates the last cycle of data on app_wdf_data
for the current write.

app_rd_data This is the read data returned to the UI.

app_rd_data_end This signal indicates the last cycle of data on app_rd_data
for the current read.

app_rd_data_valid This signal indicates that the data on app_rd_data is valid.

Table 1-94: Parameters of Interest During Simulation

Parameter Name Usage

SIM_BYPASS_INIT_CAL This parameter sets the simulation initialization and
calibration procedures.

END_ADDRESS This is the end address for the traffic generator example
design.

PRBS_EADDR_MASK_POS This is the end address for PRBS data.

ORDERING This parameter turns the reordering controller logic on and
off.

Table 1-93: Signals of Interest During Simulation (Cont’d)

Signal Name Usage

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 155
UG406 October 19, 2011

Debugging Virtex-6 FPGA DDR2/DDR3 SDRAM Designs

Figure 1-79 shows a high-level view of a successful simulation using the provided example
design with the abbreviated simulation parameter settings from Table 1-88.

The simulation can be divided into these main sections: clock phase calibration, memory
initialization, write leveling, calibration, and execution of the traffic generator.

Memory Initialization

Memory initialization skips the initial 200 μs delay but completes all remaining steps as
defined by the DDR2/DDR3 JEDEC specification. Successful completion of memory
initialization generates a message similar to the following in the simulator transcript:

PHY_INIT: Memory Initialization completed at x ps

Write Leveling (DDR3 SDRAM Only)

To satisfy the tDQSS requirement, write leveling is performed to compensate for skew
between DQS and CK. Write leveling starts after memory initialization completes.
Successfully completion of write leveling generates a message similar to the following in
the simulator transcript:

PHY_INIT: Write Leveling completed at x ps

Calibration

Calibration completes read leveling, write calibration, and read enable calibration. This is
completed over two stages. This sequence successfully completes when the phy_init_done
signals asserts. For more details, refer to PHY, page 104.

The first stage performs per-byte read leveling calibration. The data pattern used during
this stage is FF00FF00FF00. The data pattern is first written to the memory (Figure 1-80).

X-Ref Target - Figure 1-79

Figure 1-79: Successful Simulation of Example Design

UG406_c1_63_071709

http://www.xilinx.com

156 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

This pattern is then continuously read back while the per-byte calibration completes
(Figure 1-81).

Successful completion of this first stage of calibration generates a message similar to the
following in the simulator transcript:

PHY_INIT: Read Leveling Stage 1 completed at x ps

The second stage performs write calibration and read enable calibration. The data pattern
used during this stage is FF00AA55AA9966. The data pattern is first written to the
memory (Figure 1-82).

X-Ref Target - Figure 1-80

Figure 1-80: First Stage of Calibration: Data Write to Memory

UG406_c1_64_071709

X-Ref Target - Figure 1-81

Figure 1-81: First Stage of Calibration: Data Read from Memory

UG406_c1_65_071709

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 157
UG406 October 19, 2011

Debugging Virtex-6 FPGA DDR2/DDR3 SDRAM Designs

The data pattern is then continuously read back while the write calibration and read enable
calibration completes (Figure 1-83).

Successful completion of this second stage of calibration generates a message similar to the
following in the simulator transcript:

PHY_INIT: Read Leveling Stage 2 completed at x ps

The phy_init_done signal is asserted, signifying successful completion of the entire
calibration process. A read command is issued as part of the phase detector for continuous
calibration. See Phase Detector, page 113 for more details. Successful completion of this
initial phase detector calibration generates a message similar to the following in the
simulator transcript:

PHY_INIT: Phase Detector Initial Cal completed at x ps

Traffic Generator

After phy_init_done is asserted and the initial phase detector read is performed, the traffic
generator takes control of writing to and reading from the memory. The data written is
compared to the data read back, and any mismatches trigger the error signal to be asserted.
Figure 1-84 shows successful implementation of the traffic generator with no assertions on
the error signal.

X-Ref Target - Figure 1-82

Figure 1-82: Second Stage of Calibration: Data Write to Memory

UG406_c1_66_071709

X-Ref Target - Figure 1-83

Figure 1-83: Second Stage of Calibration: Data Read from Memory

UG406_c1_67_071709

http://www.xilinx.com

158 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

Debug Issues with User Design Simulation

After the simulation environment and parameter settings are verified by successful
simulation of the example design, issues with the user design simulation can be
investigated. Because the environment and parameters are verified to work properly,
calibration in the user design completes without error as long as no RTL changes exist.

Data Errors

Issues that might be seen with user design simulation exist within the generation of user
writes and reads. Thus, it is crucial to understand how to drive the UI to properly send
writes and reads. For more information, refer to User Interface, page 70 and Interfacing to
the Core, page 115.

When providing addresses to the UI on app_addr, the controller is expecting a flat address.
The address must be provided linearly on app_addr as rank address (when used), bank
address, row address, and column address. Bit 10 needs to be provided as an address
location. The controller accounts for setting the A10 auto-precharge bit when appropriate.

When sending write and read commands, the corresponding UI inputs should be properly
asserted and deasserted. For more information, refer to User Interface, page 70 and
Interfacing to the Core, page 115. The traffic generator design provided within the example
design can be used as a further source of proper behavior on the UI.

To debug data errors seen on the DDR2 or DDR3 interface, UI signals must be pulled into
the simulation waveform. In the ModelSim Instance window, highlight u_ip_top
(Figure 1-85). The necessary UI signals are then shown in the Objects window. Highlight
the UI signals noted in Table 1-93, page 153 and Table 1-94, page 154, right-click, and select
Add → To Wave → Selected Signals.

X-Ref Target - Figure 1-84

Figure 1-84: Successful Implementation of the Traffic Generator

UG406_c1_68_071709

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 159
UG406 October 19, 2011

Debugging Virtex-6 FPGA DDR2/DDR3 SDRAM Designs

Figure 1-86 provides an example of a write on the UI.

X-Ref Target - Figure 1-85

Figure 1-85: ModelSim Instance Window

UG406_c1_69_071709

X-Ref Target - Figure 1-86

Figure 1-86: User Interface Write

UG406_c1_70_071709

http://www.xilinx.com

160 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

Figure 1-87 provides an example of a write on the DDR interface.

Figure 1-88 provides an example of a read on the UI.

Figure 1-89 provides an example of a read on the DDR interface.

The controller uses reordering logic by default. See Reordering, page 99 for more details.
Because of this, the order of commands sent on the UI might or might not match the order
of commands seen on the DDR interface. The reordering algorithm reorders commands on
the DDR interface to improve efficiency. However, the data seen on the UI is reordered

X-Ref Target - Figure 1-87

Figure 1-87: DDR Interface Write

UG406_c1_71_071709

X-Ref Target - Figure 1-88

Figure 1-88: User Interface Read

UG406_c1_72_071709

X-Ref Target - Figure 1-89

Figure 1-89: Read on DDR Interface

UG406_c1_73_071709

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 161
UG406 October 19, 2011

Debugging Virtex-6 FPGA DDR2/DDR3 SDRAM Designs

back to the order requested by the user. Because of this, the DDR and UI might not match.
It might be useful to turn reordering on and off for debugging purposes or to study
efficiency improvements for specific traffic patterns. This is controlled with the top-level
parameter ORDERING. By default, this is set to NORM, which uses the full capability of
the reordering algorithms. To turn reordering off in simulation, the ORDERING parameter
in the simulation testbench (sim_tb_top.v) should be set to STRICT.

Verifying the Simulation Using the Example Design (for Designs with the
AXI4 User Interface)

The example design generated when the AXI4 interface is selected as the user interface is
different compared to the traffic generator standard user interface. The intent of this
synthesizable testbench is to verify the AXI4 transactions as well as the memory controller
transactions. However, this testbench does not verify all memory controller features and is
aimed at verifying the AXI4 SHIM features. Table 1-95 shows the signals of interest during
verification of the AXI4 testbench. These signals can be found in the example_top module.

The initialization and the calibration sequence remain the same as that indicated in
Verifying the Simulation Using the Example Design (for Designs with the Standard User
Interface), page 153. Figure 1-90 shows the status generated for a write transaction.

Table 1-95: Signals of Interest During Simulation for AXI4 Testbench

Signal Description

test_cmptd
When asserted, this signal indicates that the current round of tests with
random reads and writes was completed. This signal is deasserted when
a new test starts.

write_cmptd
This signal is asserted for one clock, indicating that the current write
transaction was completed.

cmd_err
When asserted, this signal indicates that the command phase of the AXI4
transaction (read or write) had an error.

write_err When asserted, this signal indicates that the write transaction to memory
resulted in error.

dbg_wr_sts_vld
When asserted, this signal indicates a valid status for the write transaction
on the dbg_wr_sts bus. This signal is asserted even if the write transaction
does not complete.

dbg_wr_sts This signal indicates the status of the write transaction. The details of the
status are given in Table 1-96.

read_cmptd
This signal is asserted for one clock, indicating that the current read
transaction was completed.

read_err
When asserted, this signal indicates that the read transaction to the
memory resulted in error.

dbg_rd_sts_vld
When asserted, this signal indicates a valid status for the read transaction
on the dbg_rd_sts bus. This signal is asserted even if the read transaction
does not complete.

dbg_rd_sts
This signal indicates the status of the read transaction. The details of the
status are given in Table 1-97.

http://www.xilinx.com

162 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

X-Ref Target - Figure 1-90

Figure 1-90: Status for the Write Transaction

Table 1-96: Debug Status for the Write Transaction

Bits Status Description

1:0 The write response received for AXI

5:2 Response ID for the write response

8:6

AXI wrapper write FSM state when time-out (watchdog timer
should be enabled) occurred:

• 3'b001 - Data write transaction
• 3'b010 - Waiting for acknowledgment for written data
• 3'b011 - Dummy data write transaction
• 3'b100 - Waiting for response from the response channel

15:9 Reserved

16 Command error occurred during write transaction

17 Write error occurred, the write transaction could not be completed

20:18

Data pattern used for the current transaction

• 3'b000 - 5A and A5
• 3'b001 - PRBS pattern
• 3'b010 - Walking zeros
• 3'b011 - Walking ones
• 3'b100 - All ones
• 3'b101 - All zeros

31:21 Reserved

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 163
UG406 October 19, 2011

Debugging Virtex-6 FPGA DDR2/DDR3 SDRAM Designs

Figure 1-91 shows the status generated for a read transaction.

The calibration and other DDR data read and write transactions are similar to what is
described in the previous sections. The AXI4 write and read transactions are started only
after the phy_init_done signal is asserted.

X-Ref Target - Figure 1-91

Figure 1-91: Status for the Read Transaction

Table 1-97: Debug Status for the Read Transaction

Bits Status Description

0 Read error response on AXI

1 Incorrect response ID presented by the AXI slave

3:2

AXI wrapper read FSM state when time-out (watchdog timer should be
enabled) occurred:

• 2'b01 - Read command transaction
• 2'b10 - Data read transaction

15:4 Reserved

16 Command error occurred during read transaction

17 Read error occurred, read transaction could not be completed

18 Data mismatch occurred between the written data and read data

26:19 Pointer value for which the mismatch occurred

29:27

Data pattern used for the current check:

• 3'b000 - 5A and A5
• 3'b001 - PRBS pattern
• 3'b010 - Walking zeros
• 3'b011 - Walking ones
• 3'b100 - All ones
• 3'b101 - All zeros

31:30 Reserved

http://www.xilinx.com

164 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

Synthesis and Implementation Debug
Figure 1-92 shows the debug flow for synthesis and implementation.

Verify Successful Synthesis and Implementation

The example design and user design generated by the MIG tool include
synthesis/implementation script files and user constraint files (.ucf). These files should
be used to properly synthesize and implement the targeted design and generate a working
bitstream. The synthesis/implementation script file, called ise_flow.bat, is located in
both the example_design/par and user_design/par directories. Execution of this
script runs either the example design or the user design through synthesis, translate, MAP,
PAR, TRACE, and BITGEN. The options set for each of these processes are the only ones
that have been tested with the DDR2 and DDR3 MIG designs. A successfully implemented
design completes all processes with no errors (including zero timing errors).

Verify Modifications to the MIG Output

The MIG tool allows the user to select the FPGA banks for the memory interface signals.
Based on the banks selected, the MIG tool outputs a UCF with all required location
constraints. This file is located in both the example_design/par and
user_design/par directories and should not be modified.

The MIG tool outputs open source RTL code parameterized by top-level HDL parameters.
These parameters are set by the MIG tool and should not be modified manually. If changes
are required, such as increasing or decreasing the frequency, the MIG tool should be rerun
to create an updated design. Manual modifications are not supported and should be
verified independently in behavioral simulation, synthesis, and implementation.

Identifying and Analyzing Timing Failures

The MIG DDR2 and DDR3 designs have been verified to meet timing using the example
design across a wide range of configurations. However, timing violations might occur, for
example, when integrating the MIG design with the user’s specific application logic. Any
timing violations that are encountered must be isolated. The timing report output by
TRACE (.twx/.twr) should be analyzed to determine if the failing paths exist in the MIG
DDR2/DDR3 design or the UI (backend application) to the MIG design. If failures are

X-Ref Target - Figure 1-92

Figure 1-92: Synthesis and Implementation Debug Flowchart

Verify Successful Synthesis and
Implementation Using Example Design

Verify Any Modification to the MIG Output

Verify Successful Synthesis and
Implementation Using User Design

UG406_c1_74_071709

Verify Design Timing in TRACE

Open WebCase

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 165
UG406 October 19, 2011

Debugging Virtex-6 FPGA DDR2/DDR3 SDRAM Designs

encountered, the user must ensure that the build options (that is, XST, MAP, PAR) specified
in the ise_flow.bat file are used.

If failures still exist, Xilinx has many resources available to aid in closing timing. The
PlanAhead™ tool [Ref 10] improves performance and quality of the entire design. The
Xilinx Timing Constraints User Guide [Ref 11] provides valuable information on all available
Xilinx constraints.

Hardware Debug
Figure 1-93 shows the debug flow for hardware.

Verifying Design Guidelines

See Design Guidelines, page 137 for specifications on termination, I/O standards, and
trace matching. The guidelines provided therein are specific to both the DDR2 and DDR3
designs. It is important to verify that these guidelines have been referred to during board
layout. Failure to follow these guidelines or modifications to a MIG tool provided pinout,
or both, can result in problematic behavior in hardware as discussed in this debugging
section.

Clocking

The external clock source should be measured to ensure frequency, stability (jitter), and
usage of the expected FPGA pin. The designer must ensure that the design follows all
clocking guidelines. If clocking guidelines have been followed, the interface should be run
at a slower speed. Not all designs or boards can accommodate slower speeds. Lowering
the frequency increases the marginal setup or hold time, or both, due to PCB trace
mismatch, poor signal integrity, or excessive loading. When lowering the frequency, the
MIG tool should be rerun to regenerate the design with the lower clock frequency. Portions

X-Ref Target - Figure 1-93

Figure 1-93: Hardware Debug Flowchart

Verify Memory Implementation Guidelines
are Properly Followed

Run SI Simulation Using IBIS

Run Example Design

UG406_c1_75_071609

Isolate Bit Errors

Board Measurements

- Measure Signal Integrity
- Measure Supply and VREF Voltages
- Measure Bus Timing

Check Clocking/Run Interface at
Slower Frequency

Open WebCase

http://www.xilinx.com

166 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

of the calibration logic are sensitive to the CLK_PERIOD parameter; thus, manual
modification of the parameter is discouraged.

Verifying Board Pinout

The user should ensure that the pinout provided by the MIG tool is used without
modification. There are a few pin swaps that are supported. These pin modifications are
detailed in Pin Assignments, page 137. Then, the board schematic should be compared to
the <design_name>.pad report generated by PAR. This step ensures that the board
pinout matches the pins assigned in the implemented design.

Running Signal Integrity Simulation with IBIS Models

To verify that board layout guidelines have been followed, signal integrity simulations
must be run using the I/O buffer information specification (IBIS). These simulations
should always be run for both pre-board and post-board layouts. The purpose of running
these simulations is to confirm the signal integrity on the board.

The ML561 Hardware-Simulation Correlation chapter of the Virtex-5 FPGA ML561 Memory
Interfaces Development Board User Guide [Ref 12] can be used as a guideline. This chapter
provides a detailed look at signal integrity correlation results for the ML561 board. It can
be used as an example for signal integrity analysis. It also provides steps to create a
design-specific IBIS model to aid in setting up the simulations. While this guide is specific
to Virtex-5 devices and the ML561 development board, the principles therein can be
applied to Virtex-6 FPGA MIG designs.

Running the Example Design

The MIG tool provided example design is a fully verified design that can be used to test the
memory interface on the board. It rules out any issues with the backend logic interfacing
with the MIG core. In addition, the traffic generator provided by the MIG tool can be
parameterized to send out different data patterns that test different board-level concerns.
For example, a Hammer pattern stresses the memory interface for simultaneous switching
outputs (SSOs), while a “Walking 1s” or “Walking 0s” pattern tests if each memory DQ bit
can be set to 1 and 0, independent of other bits. See Quick Start Example Design, page 54
for full details on the available data patterns.

Debugging Common Hardware Issues

When calibration failures and data errors are encountered in hardware, the ChipScope
analyzer should be used to analyze the behavior of MIG core signals. For detailed
information about using the ChipScope analyzer, refer to the ChipScope Pro 11.1 Software
and Cores User Guide [Ref 14].

A good starting point in hardware debug is to load the provided example_design onto the
board in question. This is a known working solution with a traffic generator design that
checks for data errors. This design should complete successfully with the assertion of
phy_init_done and no assertions of error. Assertion of phy_init_done signifies successful
completion of calibration while no assertions of error signifies that the data is written to
and read from the memory compare with no data errors.

PHY Layer Debug Port

The top-level wrapper, memc_ui_top.v, provides both input and output signals. These
signals can be used to debug the various sections of the PHY layer logic if the debug option
is checked when generating the design through the MIG tool. These signals can also be

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 167
UG406 October 19, 2011

Debugging Virtex-6 FPGA DDR2/DDR3 SDRAM Designs

used to monitor PHY outputs, such as the results of the various calibration stages, disable
certain features of the PHY, and to adjust portions of the PHY I/O timing.

All debug signals are prefixed with “dbg_” and are synchronous to the clk clock. These
signals are listed in Table 1-98, page 167 along with descriptions of the data they profile.

When the debug option is checked when generating a design with the MIG tool, an
example ChipScope analyzer debug configuration is instantiated that consists of an
Integrated Controller (ICON), Integrated Logic Analyzer (ILA), and several VIO modules.

Table 1-98: PHY Layer Debug Signals

Bus Name I/O Width Description

Write Path Calibration Debug

dbg_wl_dqs_inverted Output DQS_WIDTH This is a 1-bit value indicating whether the DQS
output is inverted as a result of write leveling:

1: Inverted

0: Not inverted

dbg_wr_calib_clk_delay Output 2 × DQS_WIDTH This is a 2-bit value indicating the number of
memory clock cycles of delay for each DQS group.

dbg_wl_odelay_dqs_tap_cnt Output 5 × DQS_WIDTH This is a 5-bit IODELAY output tap count for each
DQS.

dbg_wl_odelay_dq_tap_cnt Output 5 × DQS_WIDTH This is a 5-bit IODELAY output tap count for all DQ
and DM bits in each DQS group.

dbg_wr_tap_set_en Input 1 If this input is driven High, then
dbg_wr_dqs_tap_set and dbg_wr_dq_tap_set are
used to set the output ODELAY delays for DQS and
DQ, respectively, during write transactions to the
DDRx memory. In the case of DDR3 SDRAM, when
write leveling is enabled, the delay values set by
the debug port take effect only after completion of
write leveling.

dbg_wr_dqs_tap_set Input 5 x DQS_WIDTH This is a 5-bit IODELAY tap count for each DQS
used to override the output delay values used
during writes. This bus is used only if
dbg_wr_tap_set_en is set High.

dbg_wr_dq_tap_set Input 5 x DQS_WDITH This is a 5-bit IODELAY tap count for all DQ and
DM in the corresponding DQS group used to
override the output delay values used during
writes. This bus is used only if dbg_wr_tap_set_en
is set High.

dbg_wrlvl_start Output 1 This is used only for DDR3 designs. It is pulsed to
a 1 at the start of write leveling.

dbg_wrlvl_done Output 1 This is used only for DDR3 designs. It is driven to a
static 1 after the completion of write leveling.

dbg_wrlvl_err Output 1 This is used only for DDR3 designs. It is driven to a
static 1 if an error occurred during write leveling.

Read Path Calibration Debug

http://www.xilinx.com

168 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

dbg_rdlvl_start Output 2 Each bit is driven to a static 1 as each stage of read
leveling is started. The dbg_rdlvl_start[0] signal
corresponds to stage 1.

dbg_rdlvl_done Output 2 Each bit is driven to a static 1 as each stage of read
leveling is completed. The dbg_rdlvl_done[0]
signal corresponds to stage 1.

dbg_rdlvl_err Output 2 This output indicates if an error occurred during
each stage of read leveling.

dbg_cpt_tap_cnt Output 5 × DQS_WIDTH This is a 5-bit ODELAY tap count for the capture
clock for each DQS group. This value is updated if
dbg_pd_inc_cpt and dbg_pd_dec_cpt are used to
change the capture clock tap count dynamically.

dbg_cpt_first_edge_cnt Output 5 × DQS_WIDTH This is a 5-bit ODELAY tap count for each DQS
group indicating the capture clock tap count
reached during read leveling when the first edge of
the read data window is found.

dbg_cpt_second_edge_cnt Output 5 × DQS_WIDTH This is a 5-bit ODELAY tap count for each DQS
group indicating the capture clock tap count
reached during read leveling when the second
inner edge of the read data window is found. Set to
0 if second edge was not found.

dbg_rd_bitslip_cnt Output 2 × DQS_WIDTH This is a 2-bit value indicating the number of bit
times by which read data for each DQS group is
additionally delayed. Along with dbg_cpt_tap_cnt
and dbg_rd_clkdly_cnt, this value is used to for
read data deskew.

dbg_rd_clkdly_cnt Output 2 × DQS_WIDTH This is a 2-bit value indicating the number of clk
cycles by which read data for each DQS group is
additionally delayed. Along with dbg_cpt_tap_cnt
and dbg_rd_bitslip_cnt, this value is used for read
data deskew.

dbg_rd_active_dly Output 5 This is a 5-bit value indicating the delay in clk
cycles between when a read command is issued to
the PHY, and when valid read data is available at
the PHY interface.

Phase Detector Debug

dbg_pd_off Input 1 This input should be driven High to disable initial
calibration of the read phase detector. The value of
this signal must not be changed after the DDR3
interface logic has come out of reset.

dbg_pd_maintain_off Input 1 This input should be driven High to disable
periodic calibration of the read phase detector.

Table 1-98: PHY Layer Debug Signals (Cont’d)

Bus Name I/O Width Description

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 169
UG406 October 19, 2011

Debugging Virtex-6 FPGA DDR2/DDR3 SDRAM Designs

dbg_pd_maintain_0_only Input 1 This input should be driven High to disable the
read phase detector periodic IODELAY adjustment
for bytes 1 and higher. When this signal is High,
byte 0 maintenance continues to adjust the read
clock MMCM phase, which affects the sampling
time for all bytes.

Miscellaneous Tap Count Monitoring

dbg_dqs_p_tap_cnt Output 5 × DQS_WIDTH This is a 5-bit value indicating the instantaneous
delay value of the IODELAY for the corresponding
DQS. This value fluctuates between write and read
values depending on the current bus traffic.

dbg_dq_tap_cnt Output 5 × DQS_WIDTH This is a 5-bit tap count for the capture clock of the
DQ I/O in each DQS group. This value fluctuates
between write and read values depending on the
current bus traffic.

Read Data Capture Clock Adjustment

dbg_inc_cpt Input 1 This input increments the tap count for the capture
clock IODELAY specified by dbg_inc_dec_sel only
when the read phase detector is disabled by driving
dbg_pd_maintain_off High. The tap value is
incremented by one for every clk cycle when this
signal is held High. This signal and dbg_dec_cpt
must not be driven High on the same clock cycle.

dbg_dec_cpt Input 1 This input decrements the tap count for the capture
clock IODELAY specified by dbg_inc_dec_sel only
when the read phase detector is disabled by driving
dbg_pd_maintain_off High. The tap value is
incremented by one for every clk cycle when this
signal is held High. This signal and dbg_inc_cpt
must not be driven High on the same clock cycle.

dbg_inc_rd_dqs Input 1 This input increments the input tap count for the
DQS IODELAY specified by dbg_inc_dec_sel. The
tap value is incremented by one for every clk cycle
when this signal is held High. Only the DQS input
delay (that is, during reads) is varied; the value of
the DQS delay when it is an output (during writes)
is not varied. This signal and dbg_dec_rd_dqs must
not be driven High on the same clock cycle.

dbg_dec_rd_dqs Input 1 This input decrements the input tap count for the
DQS IODELAY specified by dbg_inc_dec_sel. The
tap value is decremented by one for every clk cycle
when this signal is held High. Only the DQS input
delay (that is, during reads) is varied; the value of
the DQS delay when it is an output (during writes)
is not varied. This signal and dbg_inc_rd_dqs must
not be driven High on the same clock cycle.

Table 1-98: PHY Layer Debug Signals (Cont’d)

Bus Name I/O Width Description

http://www.xilinx.com

170 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

dbg_inc_dec_sel Input DQS_CNT_WIDTH This input determines the specific capture clock or
DQS IODELAY to vary using dbg_inc_cpt,
dbg_dec_cpt, dbg_dec_rd_dqs, and
dbg_dec_rd_dqs. When neither of these four
signals is asserted, the value of this bus is a don’t
care.

dbg_inc_rd_fps Input 1 This input increments the phase of the MMCM
output (CLKOUT2) used to drive the capture clock
for all DQS groups via the fine phase shift (FPS)
feature of the MMCM. For every clk cycle that this
input is held High, the phase of this clock is
incremented by 1/56 of the MMCM VCO period.
This input can therefore be used to make a much
finer-grained adjustment to the capture clock phase
in comparison to varying IODELAY taps via the
dbg_inc/dec_cpt inputs; however, any changes to
the phase made via this signal affect the capture
clocks for all DQS groups. This input only has an
effect if read phase detector updates are disabled,
either by driving dbg_pd_off or
dbg_pd_maintain_off High; otherwise, the read
phase detector simply readjusts the MMCM phase
to match the incoming DQS phase on future reads
and “undoes” any phase changes made via this
signal. This signal and dbg_dec_rd_fps must not be
driven High on the same clock cycle.

dbg_dec_rd_fps Input 1 This input decrements the phase of the MMCM
output used to drive the capture clock for all DQS
groups via the fine phase shift feature of the
MMCM. See the description for dbg_inc_rd_fps for
more information on this input.

Synchronized Read Data

dbg_rddata Output 4 × DQ_WIDTH This is the capture read data synchronized to the
clk clock domain.

Table 1-98: PHY Layer Debug Signals (Cont’d)

Bus Name I/O Width Description

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 171
UG406 October 19, 2011

Debugging Virtex-6 FPGA DDR2/DDR3 SDRAM Designs

Isolating Bit Errors

An important hardware debug step is to try to isolate when and where the bit errors occur.
Looking at the bit errors, these should be identified:

• Are errors seen on data bits belonging to certain DQS groups?

• Are errors seen on accesses to certain addresses, banks, or ranks of memory?

For example, on designs that can support multiple varieties of DIMM modules, all
possible address and bank bit combinations should be supported.

• Do the errors only occur for certain data patterns or sequences?

This can indicate a shorted or open connection on the PCB. It can also indicate an SSO
or crosstalk issue.

It might be necessary to isolate whether the data corruption is due to writes or reads. This
case can be difficult to determine because if writes are the cause, read back of the data is
bad as well. In addition, issues with control or address timing affect both writes and reads.
Some experiments that can be tried to isolate the issue are:

• If the errors are intermittent, have the controller issue a small initial number of writes,
followed by continuous reads from those locations. If the reads intermittently yield
bad data, there is a potential read problem.

• Check/vary only write timing:

• If on-die termination is used, check that the correct value is enabled in the
DDR2/DDR3 device and that the timing on the ODT signal relative to the write
burst is correct.

• Use ODELAY to vary the phase of DQ relative to DQS.

• Vary only read timing:

• Check the IDELAY values after calibration. Look for variations between IDELAY
values. IDELAY values should be very similar for DQs in the same DQS group.

• Vary the IDELAY taps after calibration for the bits that are returning bad data.
This affects only the read capture timing.

Board Measurements

The signal integrity of the board and bus timing must be analyzed. The ML561
Hardware-Simulation Correlation chapter of the Virtex-5 FPGA ML561 Memory Interfaces
Development Board User Guide [Ref 12] describes expected bus signal integrity. While this
guide is specific to Virtex-5 devices and the ML561 development board, the principles
therein can be applied to Virtex-6 FPGA MIG designs.

Another important board measurement is the reference voltage levels. It is important that
these voltage levels are measured when the bus is active. These levels can be correct when
the bus is idle, but might drop when the bus is active.

http://www.xilinx.com

172 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

Supported Devices for Virtex-6 FPGAs
Designs generated using the MIG tool are independent of memory package. Thus, the
package part of the memory component part number is replaced with XX, where XX
indicates a don’t care condition.

Table 1-99 through Table 1-102 list memory devices supported by the tool for
Virtex-6 FPGA DDR2 and DDR3 designs. Table 1-99 lists the supported components for
DDR2 SDRAM.

Table 1-100 lists the supported DIMMs for DDR2 SDRAM.

Table 1-101 lists the supported components for DDR3 SDRAM.

Table 1-99: Supported Components for DDR2 SDRAM

Components Packages

MT47H64M16XX-25 HR, HQ, CF, HW, HV

MT47H128M8XX-25 HR, HQ, CF, HW, HV

MT47H256M4XX-25E HR, HQ, CF, HW, HV

MT47H128M16XX-3 HG

MT47H256M8XX-3 HG

MT47H256M8XX-37E HG

Table 1-100: Supported DIMMs for DDR2 SDRAM

DIMM Type Part Number

RDIMM MT9HTF12872PY-80E

RDIMM MT18HTF25672PY-80E

RDIMM MT18HTF6472PY-40E

SODIMM MT8HTF6464HY-667

SODIMM MT9HTF12872CHY-667

UDIMM MT8HTF6464HY-667

UDIMM MT9HTF12872CHY-667

Table 1-101: Supported Components for DDR3 SDRAM

Components Packages

MT41J128M8XX-15E HY, BY, LA

MT41J64M16XX-15E HY, BY, LA

MT41J256M4XX-15E HY, BY, LA

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 173
UG406 October 19, 2011

Supported Devices for Virtex-6 FPGAs

Table 1-102 lists the supported DIMMs for DDR3 SDRAM.

Table 1-102: Supported DIMMs for DDR3 SDRAM

DIMM Type Part Number

RDIMM MT9JSF12872PY-1G1

RDIMM MT18JSF25672PY-1G1

SODIMM MT4JSF6464HY-1G1

UDIMM MT8JTF12864AY-1G4

UDIMM MT9JSF12872AY-1G4

UDIMM MT4JTF6464AY1G1

http://www.xilinx.com

174 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 1: DDR2 and DDR3 SDRAM Memory Interface Solution

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 175
UG406 October 19, 2011

Chapter 2

QDRII+ SRAM Memory Interface
Solution

Introduction
The QDRII+ SRAM memory interface solution is a physical layer for interfacing
Virtex®-6 FPGA user designs to QDRII+ SRAM devices. QDRII+ SRAMs are the latest
generation of QDR SRAM devices that offer high-speed data transfers on separate read
and write buses on the rising and falling edges of the clock. These memory devices are
used in high-performance systems as temporary data storage, such as:

• Look-up tables in networking systems

• Packet buffers in network switches

• Cache memory in high-speed computing

• Data buffers in high-performance testers

The QDRII+ SRAM memory solutions core is a PHY that takes simple user commands,
converts them to the QDRII+ protocol, and provides the converted commands to the
memory. The PHY’s half-frequency design enables the user to provide one read and one
write request per cycle eliminating the need for a memory controller and the associated
overhead, thereby reducing the latency through the core. Unique capabilities of the
Virtex-6 family allow the PHY to maximize performance and simplify read data capture
within the FPGA. The full solution is complete with a synthesizable reference design.

This chapter describes the core architecture and information about using, customizing, and
simulating a LogiCORE™ IP QDRII+ SRAM memory interface core for the Virtex-6 FPGA.
Although this soft memory controller core is a fully verified solution with guaranteed
performance, termination and trace routing rules for PCB design need to be followed to
have the best possible design. For detailed board design guidelines, see Design Guidelines,
page 224.

For detailed information and updates about the Virtex-6 FPGA QDRII+ SRAM memory
interface core, refer to the Virtex-6 FPGA data sheets [Ref 9], [Ref 13] on the Virtex-6 FPGA
memory interface product page.

http://www.xilinx.com

176 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 2: QDRII+ SRAM Memory Interface Solution

Getting Started
This section is a step-by-step guide to run the design through implementation with the
Xilinx tools, and simulate the example design using the provided synthesizable testbench.

System Requirements
These are needed to implement the QDRII+ SRAM memory interface core:

• Microsoft Windows XP Professional (32-/64-bit) or Linux operating systems.

• ISE® Design Suite, version 13.3.

Quick Start Example Design
After the core is successfully generated, the example design HDL can be processed
through the Xilinx implementation toolset. The MIG tool provides a simple synthesizable
testbench to generate traffic to test the core. An architectural overview of the testbench is
shown in Figure 2-1. The top level of the testbench (sim_tb_top) is located in
<project_dir>/sim and contains the memory model to simulate against the top level of
the example design (ip_top). The ip_top folder contains the infrastructure module, the
iodelay controller, and the simple testbench. The infrastructure module generates all the
clocking signals needed by the core. In tb_top are the modules used to generate
commands, data, and addresses, as well as a comparator module that checks the responses
to verify whether or not the correct data was returned.

Simulating the Example Design

The Xilinx® UNISIM library must be mapped into the simulator. The testbench provided
with the example design supports these pre-implementation simulations:

• The testbench along with vendor’s memory model used in the example design

X-Ref Target - Figure 2-1

Figure 2-1: Top Level of Testbench

UG406_c2_01_012111

user_top

ip_top

sim_tb_top

QDRII+ SRAM
Memory Model

tb_top

infrastructure

IODELAYCTRL

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 177
UG406 October 19, 2011

Getting Started

• The RTL files of the memory controller and the PHY core, created by the MIG tool

The simulation can be run from this directory:

<component_name>/example_design/sim

ModelSim is the only supported simulation tool. The simple testbench can be run using
ModelSim by executing the sim.do script.

Implementing the Example Design

The ise_flow.bat script file runs the design through synthesis, translate, map, and par.
This script file sets all the required options and should be referred to for the recommended
build options for the design.

Customizing and Generating the Core

Generation through the Graphical User Interface

The Memory Interface Generator is a self-explanatory wizard tool that can be invoked
under the CORE Generator™ software. This section is intended to help in understanding
the various steps involved in using the MIG tool.

These steps should be followed to generate a Virtex-6 FPGA QDRII+ SRAM design:

1. Launch the CORE Generator software by selecting
Start → Xilinx ISE Design Suite 13.3 → ISE → Accessories → CORE
Generator (Figure 2-2).

X-Ref Target - Figure 2-2

Figure 2-2: Xilinx CORE Generator Software

UG406_c2_02_041411

http://www.xilinx.com

178 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 2: QDRII+ SRAM Memory Interface Solution

2. Choose File → New project to open the New Project dialog box. Create a new project
named Virtex6_MIG_Example_Design (Figure 2-3).

3. Enter a project name and location. Click Save (Figure 2-4).

X-Ref Target - Figure 2-3

Figure 2-3: New CORE Generator Software Project

X-Ref Target - Figure 2-4

Figure 2-4: New Project Menu

UG406_c2_03_081109

UG406_c2_04_081109

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 179
UG406 October 19, 2011

Getting Started

4. Select these project options for the part (Figure 2-5).

a. Family: Virtex-6

b. Device: xc6vlx240t

c. Package: ff1156

d. Speed Grade: -2

5. Select Generation from the menu on the left. From this menu, select Verilog or VHDL
as the Design Entry and ISE for the Vendor Flow Setting. Click OK to finish the Project
Options setup (Figure 2-6).

X-Ref Target - Figure 2-5

Figure 2-5: CORE Generator Software Project Options

X-Ref Target - Figure 2-6

Figure 2-6: CORE Generator Software Design Flow Settings

UG406_c2_05_081109

UG406_c2_06_081109

http://www.xilinx.com

180 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 2: QDRII+ SRAM Memory Interface Solution

6. Select Memory Interface Generator (MIG) by expanding Memories & Storage
Elements (Figure 2-7).

7. Launch the MIG tool wizard by selecting Memories & Storage Elements →
Memory Interface Generators → MIG (Figure 2-8).

X-Ref Target - Figure 2-7

Figure 2-7: Virtex-6_MIG_Example_Design Project Page

X-Ref Target - Figure 2-8

Figure 2-8: Starting the MIG Tool Wizard

UG406_c2_07_041411

UG406_c2_08_041411

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 181
UG406 October 19, 2011

Getting Started

8. The options screen in the CORE Generator software displays the details of the selected
CORE Generator software options that are selected before invoking the MIG tool
(Figure 2-9).

9. Click Next to display the Output Options window.

X-Ref Target - Figure 2-9

Figure 2-9: Virtex-6 FPGA Memory Interface Generator Front Page

UG406_c2_09_081109

http://www.xilinx.com

182 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 2: QDRII+ SRAM Memory Interface Solution

MIG Tool Output Options

1. Select the Create Design radio button to create a new memory core. Enter a
component name in the Component Name field (Figure 2-10).

MIG tool outputs are generated with the folder name <component name>.

Note: Only alphanumeric characters can be used for <component name>. Special characters
cannot be used. This name should always start with an alphabetical character and can end with
an alphanumeric character.

2. Click Next to display the Pin Compatible FPGAs window.

X-Ref Target - Figure 2-10

Figure 2-10: MIG Tool Output Options

UG406_c1_09_022610

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 183
UG406 October 19, 2011

Getting Started

Pin Compatible FPGAs

The Pin Compatible FPGAs window lists FPGAs in the selected family having the same
package. If the generated pinout from the MIG tool needs to be compatible with any of
these other FPGAs, this option should be used to select the FPGAs with which the pinout
has to be compatible (Figure 2-11).

1. Select any of the compatible FPGAs in the list. Only the common pins between the
target and selected FPGAs are used by the MIG tool. The name in the text box signifies
the target FPGA selected.

2. Click Next to display the Memory Selection window.

X-Ref Target - Figure 2-11

Figure 2-11: Pin-Compatible Virtex-6 FPGAs

UG406_c2_11_081109

http://www.xilinx.com

184 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 2: QDRII+ SRAM Memory Interface Solution

Creating the Virtex-6 FPGA QDRII+ SRAM Memory Design

Memory Selection

This page displays all memory types that are supported by the selected FPGA family.

1. Select the QDRII+ SRAM controller type.

2. Click Next to display the Controller Options window (Figure 2-12).
X-Ref Target - Figure 2-12

Figure 2-12: Memory Type and Controller Selection

UG406_C2_12_081109

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 185
UG406 October 19, 2011

Getting Started

Controller Options

This page shows the various controller options that can be selected (Figure 2-13).

The controller options page also contains these pull-down menus to modify different
features of the design.

• Frequency: This feature indicates the operating frequency for all the controllers
(Figure 2-14). The frequency block is limited by factors such as the selected FPGA and
device speed grade.

X-Ref Target - Figure 2-13

Figure 2-13: Controller Options

UG406_c2_13_041411

X-Ref Target - Figure 2-14

Figure 2-14: Frequency Selection

UG406_c2_14_041411

http://www.xilinx.com

186 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 2: QDRII+ SRAM Memory Interface Solution

• Memory Part: This option selects the memory part for the design. Selections can be
made from the list, or if the part is not listed, a new part can be created (Figure 2-15).
QDRII+ SRAM devices of read latency 2.0 and 2.5 clock cycles are supported by the
design. If a desired part is not available in the list, the user can generate or create an
equivalent device and then modify the output to support the desired memory device.

• Data Width: The data width value can be selected here based on the memory part
selected. The MIG tool supports values in multiples of the individual device data
widths (Figure 2-16).

• Latency Mode: If fixed latency through the core is needed, the Fixed Latency Mode
option allows the user to select the desired latency. This option can be used if the user
design needs a read response returned in a predictable number of clock cycles. To use
this mode, select the Fixed Latency Mode box. After enabling fixed latency, the
pull-down box allows the user to select the number of cycles until the read response is
returned to the user. This value ranges from 19 to 30 cycles (Figure 2-17). If Fixed
Latency Mode is not used, the core uses the minimum number of cycles through the
system.

• System Clock: The MIG tool supports the use of differential system and reference
clocks or single-ended clocks. This should be set to the type of input clock that is used
(Figure 2-18).

X-Ref Target - Figure 2-15

Figure 2-15: Memory Part Selection

X-Ref Target - Figure 2-16

Figure 2-16: Data Width Selection

X-Ref Target - Figure 2-17

Figure 2-17: Latency Selection

UG406_c2_15_052010

UG406_c2_16_052010

UG406_C2_17_081109

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 187
UG406 October 19, 2011

Getting Started

• Debug Signals Control: This option indicates whether the ChipScope™ analyzer
should be incorporated into the generated design (Figure 2-19). See Debugging
Virtex-6 FPGA QDRII+ SRAM Designs, page 226 for more details on the signals that
are provided when this option is turned on.

• Internal Vref Selection. Internal Vref can be used for data read banks to allow the use
of the VREF pins for normal I/O usage (Figure 2-20).

X-Ref Target - Figure 2-18

Figure 2-18: System Clock Type

X-Ref Target - Figure 2-19

Figure 2-19: Debug Enable

X-Ref Target - Figure 2-20

Figure 2-20: Internal VREF Selection

UG406_c2_18_081209

UG406_c2_19_081209

UG406_c1_86_041610

http://www.xilinx.com

188 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 2: QDRII+ SRAM Memory Interface Solution

• Digitally Controlled Impedance (DCI): When selected, this option internally
terminates the signals from the QDR II+ SRAM read path (Figure 2-21).

X-Ref Target - Figure 2-21

Figure 2-21: DCI Selection

UG406_c2_21_022610

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 189
UG406 October 19, 2011

Getting Started

• Pin Selection. The Pin Selection mode allows the user to specify an existing pinout
and generate a new RTL core for this pinout, or pick banks for a new design.
Figure 2-22 shows the option for using an existing pinout. For each pin, a bank should
be chosen, then within that bank, a pin must be assigned. Click the Validate button to
check a pinout against the MIG pinout rules.

X-Ref Target - Figure 2-22

Figure 2-22: Pin Selection

UG406_c2_57_022610

http://www.xilinx.com

190 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 2: QDRII+ SRAM Memory Interface Solution

Bank Selections

This page allows the selection of banks for the memory interface (Figure 2-23). Banks can
be selected for different classes of memory signals, such as:

• Address and control signals

• Data write signals

• Data read signals

• System control signals

• System clocks

For customized settings, click Deselect Banks and select the appropriate bank and
memory signals. When selecting banks, read the Description tab for a list of bank selection
and pin allocation rules that must be followed.

Click Next to select the default settings and move to the next page.

X-Ref Target - Figure 2-23

Figure 2-23: Bank Selections Page

UG406_c2_22_052010

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 191
UG406 October 19, 2011

Getting Started

• Address Group Selection: Select the address/control group from one of the white
banks. Only the inner columns are allowed (Figure 2-24).

• Data Write Selection: After the address group is assigned, the data write group must
be selected. The data write group is grayed in banks that are invalid based on the
selected address group. To complete the data write selection, enough banks must be
selected to hold the data and byte write signals (Figure 2-25).

X-Ref Target - Figure 2-24

Figure 2-24: Address Group Selection

X-Ref Target - Figure 2-25

Figure 2-25: Data Write Group Selection

UG406_c2_23_052010

UG406_c2_24_052010

http://www.xilinx.com

192 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 2: QDRII+ SRAM Memory Interface Solution

• Data Read Selection: After the data write group is assigned, the data read group
needs to be selected. To complete the data read selection, enough banks must be
selected to hold the data and byte write signals (Figure 2-26).

• System Clocks Selection: After the data read group is assigned, the system clocks
group must be selected. Select this group from any of the enabled banks (Figure 2-27).

X-Ref Target - Figure 2-26

Figure 2-26: Data Read Group Selection

X-Ref Target - Figure 2-27

Figure 2-27: System Clocks Group Selection

UG406_c2_25_052010

UG406_c2_27_052010

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 193
UG406 October 19, 2011

Getting Started

• Master Bank Selection: Two extra pins are required to set up a DCI reference that
provides better signal integrity. Select the master bank from the pull-down menu
(Figure 2-28).

After the banks have been assigned, click Next to view the summary.

X-Ref Target - Figure 2-28

Figure 2-28: Master Bank Selection

UG406_C2_28_081109

http://www.xilinx.com

194 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 2: QDRII+ SRAM Memory Interface Solution

Summary

The summary window provides the complete details about the Virtex-6 FPGA memory
core selection, interface parameters, CORE Generator software options, and FPGA options
of the active project (Figure 2-29).

X-Ref Target - Figure 2-29

Figure 2-29: Summary

UG406_c2_29_052010

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 195
UG406 October 19, 2011

Getting Started

Memory Models

The MIG tool does not output the Samsung memory models needed for simulation as
noted on the Memory Models page (Figure 2-30). The required models can be downloaded
from the Samsung website at
http://www.samsung.com/global/business/semiconductor/products/sram/Products_
HighSpeedSRAM.html.

Click Next to move to the PCB Information page.

X-Ref Target - Figure 2-30

Figure 2-30: Memory Models Page

UG406_C2_30_081109

http://www.xilinx.com
http://www.samsung.com/global/business/semiconductor/products/sram/Products_HighSpeedSRAM.html
http://www.samsung.com/global/business/semiconductor/products/sram/Products_HighSpeedSRAM.html

196 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 2: QDRII+ SRAM Memory Interface Solution

PCB Information

This page displays the PCB-related information to be considered while designing the
board that uses the MIG tool generated designs (Figure 2-31).

X-Ref Target - Figure 2-31

Figure 2-31: PCB Information Page

UG406_c2_31_052010

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 197
UG406 October 19, 2011

Getting Started

Design Notes

Click the Generate button to generate the design files. The MIG tool generates three
output directories: docs, example_design, and user_design. See Directory Structure
and File Descriptions, page 199 for more details on the contents of these directories.

The MIG tool outputs some useful design notes that should be considered before
proceeding (Figure 2-32).

X-Ref Target - Figure 2-32

Figure 2-32: Design Notes

UG406_c2_32_052010

http://www.xilinx.com

198 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 2: QDRII+ SRAM Memory Interface Solution

After generating the design, a Readme page is displayed with the CORE Generator
software output descriptions (Figure 2-33).

Click Close to return to the CORE Generator software.

X-Ref Target - Figure 2-33

Figure 2-33: Readme Page

UG406_C2_33_081109

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 199
UG406 October 19, 2011

Getting Started

Directory Structure and File Descriptions

Overview

Output Directory Structure

The MIG tool outputs are generated with folder name <component name>.

Figure 2-34 shows the output directory structure of the selected design from the MIG tool.
In the <component name> directory, three folders are created:

• docs

• example_design

• user_design

The example_design and user_design directories contain most of the same files.
However, they are provided separately for easy simulation and integration into the user’s
design. The example_design directory provides an example user application that sends
traffic through the core. This example design is used for simulation and contains the
complete synthesizable testbench. The user_design directory provides only those files
needed to integrate the core into the user’s logic and does not include the simulation or
testbench files.

Directory and File Contents

The Virtex-6 device core directories and their associated files are listed in this section.

<component name>/docs

The docs folder contains the PDF documentation.

<component name>/example_design

The example_design folder contains four folders, namely, par, rtl, sim, and synth.
Table 2-1 to Table 2-8 list the contents of these directories along with file descriptions.

<component name>/example_design/par

X-Ref Target - Figure 2-34

Figure 2-34: The MIG Tool Output Directory Structure

UG406_c2_43_081209

http://www.xilinx.com

200 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 2: QDRII+ SRAM Memory Interface Solution

Table 2-1 lists the files in the example_design/par directory.

<component name>/example_design/rtl

Table 2-2 lists the files in the example_design/rtl directory.

Table 2-1: Files in example_design/par Directory

Name Description

example_top.ucf This is the user constraints file generated from the bank selections.

Table 2-2: Files in example_design/rtl Directory

Name Description

example_top.v/vhd This top-level module serves as an example for
connecting the user design to the Virtex-6 FPGA
memory interface core.

clk_ibuf.v/vhd This module instantiates the system clock input
buffers.

qdr_rld_infrastructure.v/vhd This modules helps in clock generation and
distribution.

iodelay_ctrl.v/vhd This module instantiates the IDELAYCTRL
primitive needed for IODELAY use.

phy_d_q_io.v/vhd This module is the I/O module for the entire D and
Q bus for a single memory.

phy_iob.v/vhd This module instantiates the modules that use
IOBs.

qdr_rld_phy_ocb_mon.v/vhd This module contains the logic for aligning two
clock signals for phase detection.

phy_oserdes_io.v/vhd This module is the I/O module for a single bit of
data going to the memory.

phy_read_clk_io.v/vhd This module is the I/O module for the incoming
CQ/CQ# echo clocks from the memory.

phy_read_data_align.v/vhd This module realigns the incoming data.

phy_read_dcb.v/vhd This module transfers the data from the clk_rd
domain into the clk domain.

phy_read_dly_ctrl.v/vhd This module drives the IODELAY control for each
clock and data I/O based on the control from the
calibration logic.

phy_read_stage1_cal.v/vhd This module contains the logic for stage 1
calibration.

phy_read_stage2_cal.v/vhd This module contains the logic for stage 2
calibration.

phy_read_sync.v/vhd This module synchronizes control signals from the
clk domain to the clk_rd domain.

phy_read_top.v/vhd This is the top-level of the read path.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 201
UG406 October 19, 2011

Getting Started

<component name>/example_design/sim

Table 2-3 lists the files in the example_design/sim directory.

phy_read_vld_gen.v/vhd This module contains the logic to generate the
valid signal for the read data returned on the user
interface.

phy_reset_sync.v/vhd This module contains the reset synchronization
logic for all resets used in the core.

qdr_phy_top.v/vhd This is the top-level module for the physical layer.

phy_v6_d_q_io.v/vhd This is the I/O module for a single Q bit coming
from the memory.

phy_write_control_io.v/vhd This module contains the logic for the control
signals going to the memory.

phy_write_data_io.v/vhd This module contains the logic for the data and
byte writes going to the memory.

phy_write_init_sm.v/vhd This module contains the logic for the initialization
state machine.

phy_write_top.v/vhd This is the top-level wrapper for the write path.

tb_addr_gen.v/vhd This module generates the addresses used in the
example testbench for simulation.

tb_cmp_data.v/vhd This module is the comparison module for the data
returning from the PHY in a simulation.

tb_cmp_data_bits.v/vhd This is the comparison module for a single bit of
data.

tb_data_gen.v/vhd This module generates the data to use for write
requests in the example testbench.

tb_top.v/vhd This is the top-level of the synthesizable testbench.

tb_wr_rd_sm.v/vhd This is the testbench write/read state machine that
issues commands during simulation.

user_top.v/vhd This is the top-level wrapper for the PHY.

qdr_rld_phy_pd.v/vhd This module contains the phase-detection logic.

Table 2-3: Files in example_design/sim Directory

Name Description

glbl.v This file is used for initializing the simulation environment.

sim.do This is the script used for running a ModelSim simulation.

sim_tb_top.v/vhd This is the top-level simulation file.

Table 2-2: Files in example_design/rtl Directory (Cont’d)

Name Description

http://www.xilinx.com

202 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 2: QDRII+ SRAM Memory Interface Solution

<component name>/example_design/synth

Table 2-4 lists the files in the example_design/synth directory.

<component name>/user_design/par

Table 2-5 lists the files in the user_design/par directory.

<component name>/user_design/rtl

Table 2-6 lists the files in the user_design/rtl directory.

Table 2-4: Files in example_design/synth Directory

Name Description

example_top.lso This is a library search order file provided for XST.

example_top.prj This is the ISE software project file used for synthesis.

Table 2-5: Files in user_design/par Directory

Name Description

<component name>.ucf This is the user constraints file generated from the bank
selections.

Table 2-6: Files in user_design/rtl Directory

Name Description

<component name>.v/vhd This top-level module serves as an example for
connecting the user design to the Virtex-6 FPGA
memory interface core.

clk_ibuf.v/vhd This module instantiates the system clock input
buffers.

qdr_rld_infrastructure.v/vhd This module helps in clock generation and
distribution.

iodelay_ctrl.v/vhd This module instantiates the IDELAYCTRL
primitive needed for IODELAY use.

phy_d_q_io.v/vhd This is the I/O module for the entire D and Q bus
for a single memory.

phy_iob.v/vhd This module instantiates the modules that use
IOBs.

qdr_rld_phy_ocb_mon.v/vhd This module contains the logic for aligning two
clock signals for phase detection.

phy_oserdes_io.v/vhd This is the I/O module for a single bit of data going
to the memory.

phy_read_clk_io.v/vhd This is the I/O module for the incoming CQ/CQ#
echo clocks from the memory.

phy_read_data_align.v/vhd This module realigns the incoming data.

phy_read_dcb.v/vhd This module transfers the data from the clk_rd
domain into the clk domain.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 203
UG406 October 19, 2011

Getting Started

<component name>/user_design/sim

Table 2-7 lists the files in the user_design/sim directory.

phy_read_dly_ctrl.v/vhd This module drives the IODELAY control for each
clock and data I/O based on the control from the
calibration logic.

phy_read_stage1_cal.v/vhd This module contains the logic for stage 1
calibration.

phy_read_stage2_cal.v/vhd This module contains the logic for stage 2
calibration.

phy_read_sync.v/vhd This module synchronizes control signals from the
clk domain to the clk_rd domain.

phy_read_top.v/vhd This is the top-level of the read path.

phy_read_vld_gen.v/vhd This module contains the logic to generate the
valid signal for the read data returned on the user
interface.

phy_reset_sync.v/vhd This module contains the reset synchronization
logic for all resets used in the core.

qdr_phy_top.v/vhd This is the top-level module for the physical layer.

phy_v6_d_q_io.v/vhd This is the I/O module for a single Q bit coming
from the memory.

phy_write_control_io.v/vhd This module contains the logic for the control
signals going to the memory.

phy_write_data_io.v/vhd This module contains the logic for the data and
byte writes going to the memory.

phy_write_init_sm.v/vhd This module contains the logic for the initialization
state machine.

phy_write_top.v/vhd This is the top-level wrapper for the write path.

user_top.v/vhd This is the top-level wrapper for the PHY.

qdr_rld_phy_pd.v/vhd This module contains the phase-detection logic.

Table 2-7: Files in user_design/sim Directory

Name Description

glbl.v This file is used for initializing the simulation environment.

sim.do This is the script used for running a ModelSim simulation.

sim_tb_top.v/vhd This is the top-level simulation file.

tb_addr_gen.v/vhd This module generates the addresses used in the example
testbench for simulation.

tb_cmp_data.v/vhd This is the comparison module for the data returning from
the PHY in a simulation.

Table 2-6: Files in user_design/rtl Directory (Cont’d)

Name Description

http://www.xilinx.com

204 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 2: QDRII+ SRAM Memory Interface Solution

<component name>/user_design/synth

Table 2-8 lists the files in the user_design/synth directory.

Designing with the Core
The core is bundled with an example design that can be simulated. The example design can
be used as a starting point for the user design or as a reference for debugging purposes.
Only supported modifications should be made to the configuration of the core. See
Customizing the Core, page 222 for supported configuration parameters.

Verify UCF and Update Design and UCF Rules
Verify UCF and Update Design and UCF verifies the input UCF for bank selection, pin
allocation, and constraint allocation rules, and generates warnings or error reports for any
issue. It does not verify the input .prj file. This feature is useful to verify any UCF pinout
changes after the design is generated from the MIG tool. The user must load the MIG
generated .prj file (the original .prj file) without any modifications. The verification
report is not correct if any of the parameters in the original .prj file are altered. In the
CORE Generator tool, the recustomization option should be selected to reload the project.
The design can be generated only when Verify UCF does not report an error in the
verification report. Warnings can be ignored while generating a design.

These rules are verified from the input UCF:

• If a pin is allocated to more than one signal, the tool reports an error.

• The tool stops further verification if the UCF does not adhere to the uniqueness
property.

• The associative property is verified:

• If the Read Clock pin is allocated to the multi-region clock-capable (MRCC) P pin,
all its associated signals should be allocated within the banks above and below.

• If the Read Clock pin is allocated to the MRCC P pin, all its associated signals
should be allocated within the banks above and below.

• Banks should be allocated for the group’s address, data read, and data write within
the vicinity arena.

tb_cmp_data_bits.v/vhd This is the comparison module for a single bit of data.

tb_data_gen.v/vhd This module generates the data to use for write requests in
the example testbench.

tb_top.v/vhd This is the top-level of the synthesizable testbench.

tb_wr_rd_sm.v/vhd This is the testbench write/read state machine that issues
commands during simulation.

Table 2-8: Files in user_design/synth Directory

Name Description

<component name>.lso This is a library search order file provided for XST.

<component name>.prj This is the ISE project file used for synthesis.

Table 2-7: Files in user_design/sim Directory (Cont’d)

Name Description

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 205
UG406 October 19, 2011

Verify UCF and Update Design and UCF Rules

• An error occurs if a bank is allocated outside the vicinity arena.

• The system clock should be selected either to the GC bank (24, 25, 34, and 35) or to the
bank adjacent to the capture clock bank.

• The system clock bank can be selected adjacent to the capture clock bank only
when the frequency of this controller is not repeated to any other controllers. If
the frequency of this controller is repeated to another controller, the system clock
group must be allocated to any one of the GC banks (24, 25, 34, and 35).

• The signal pairs sys_clk and clk_ref should be allocated to the CC pair or GC pair
pins (for banks adjacent to the capture clock bank) or to the GC pair pins (for GC
banks).

• The memory clock pairs should be allocated to the differential signals.

• In the DCI CASCADE syntax, the selected configuration should require the master
bank.

• The slave banks provided should be valid.

• A valid MMCM constraint value should be provided, otherwise a warning is
generated.

If the UCF satisfies the above rules, the updated design can be generated. The design:

• Provides the latest HDL.

• Updates the UCF with the latest clock constraints or any TIGs provided by keeping
the same pinout.

• Generates even the compatible UCFs if the project loaded contains the compatible
FPGA selection.

Error Messages
This section describes the error messages that are generated when verifying the UCF. The
reference UCF must follow the MIG naming conventions (refer to the UCF generated by
the MIG tool, or names used for the ML605 board).

• Uniqueness: If two or more signals are allocated to the same pins in the reference
UCF, an error message is listed in the directed file with a user-assigned name.

The error message format is “<signalname1> and <signalname2> are allocated to the
same pin.”

For example, if qdriip_q[0] and qdriip_cq[0] are allocated to the same pin, such as:

NET "qdriip_q[0]" LOC = "D12";

NET "qdriip_cq[0]" LOC = "D12";

Then this error message is displayed:

ERROR: qdriip_q[0]and qdriip_cq[0] are allocated to the same pin.
Pins are not unique.

• Association: If the read clock pins are allocated to the SRCC pins, these error
messages are displayed:

ERROR: Pin Names (qdriip_cq_n[1]) and (qdriip_q[32]) should be
allocated in the same bank as the strobe pins are allocated to 'SRCC
P' pin.

ERROR: Pin Names (qdriip_cq_n[1]) and (qdriip_q[34]) should be
allocated in the same bank as the strobe pins are allocated to 'SRCC
P' pin.

http://www.xilinx.com

206 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 2: QDRII+ SRAM Memory Interface Solution

ERROR: Pin Names (qdriip_cq_n[1]) and (qdriip_q[33]) should be
allocated in the same bank as the strobe pins are allocated to 'SRCC
P' pin.

ERROR: Pin Names (qdriip_cq_n[1]) and (qdriip_q[35]) should be
allocated in the same bank as the strobe pins are allocated to 'SRCC
P' pin.

ERROR: Pin Names (qdriip_cq_p[3]) and (qdriip_q[68]) should be
allocated in the same bank as the strobe pins are allocated to 'SRCC
P' pin.

ERROR: Pin Names (qdriip_cq_p[3]) and (qdriip_q[69]) should be
allocated in the same bank as the strobe pins are allocated to 'SRCC
P' pin.

ERROR: Pin Names (qdriip_cq_p[3]) and (qdriip_q[65]) should be
allocated in the same bank as the strobe pins are allocated to 'SRCC
P' pin.

ERROR: Pin Names (qdriip_cq_p[3]) and (qdriip_q[64]) should be
allocated in the same bank as the strobe pins are allocated to 'SRCC
P' pin.

ERROR: Pin Names (qdriip_cq_p[3]) and (qdriip_q[67]) should be
allocated in the same bank as the strobe pins are allocated to 'SRCC
P' pin.

ERROR: Pin Names (qdriip_cq_p[3]) and (qdriip_q[66]) should be
allocated in the same bank as the strobe pins are allocated to 'SRCC
P' pin.

ERROR: Pin Names (qdriip_cq_p[3]) and (qdriip_q[70]) should be
allocated in the same bank as the strobe pins are allocated to 'SRCC
P' pin.

ERROR: Pin Names (qdriip_cq_p[3]) and (qdriip_q[71]) should be
allocated in the same bank as the strobe pins are allocated to 'SRCC
P' pin.

• Vicinity Verification: Error messages are displayed when the pins are allocated out of
the vicinity arena.

• If the data write bank selected is out of the vicinity arena, these error messages are
displayed:

ERROR: c0_qdriip_d[0](DataWrite) should not be allocated to bank 42.
The rule is, it can only be moved within the bank(s) "27, 37, 38"
specified in the input mig.prj file for "Data" group.

ERROR: c0_qdriip_d[1](DataWrite) should not be allocated to bank 42.
The rule is, it can only be moved within the bank(s) "27, 37, 38"
specified in the input mig.prj file for "Data" group.

ERROR: c0_qdriip_d[2](DataWrite) should not be allocated to bank 42.
The rule is, it can only be moved within the bank(s) "27, 37, 38"
specified in the input mig.prj file for "Data" group.

ERROR: c0_qdriip_d[3](DataWrite) should not be allocated to bank 42.
The rule is, it can only be moved within the bank(s) "27, 37, 38"
specified in the input mig.prj file for "Data" group.

ERROR: c0_qdriip_d[4](DataWrite) should not be allocated to bank 42.
The rule is, it can only be moved within the bank(s) "27, 37, 38"
specified in the input mig.prj file for "Data" group.

ERROR: c0_qdriip_d[5](DataWrite) should not be allocated to bank 42.
The rule is, it can only be moved within the bank(s) "27, 37, 38"
specified in the input mig.prj file for "Data" group.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 207
UG406 October 19, 2011

Verify UCF and Update Design and UCF Rules

ERROR: c0_qdriip_d[6](DataWrite) should not be allocated to bank 42.
The rule is, it can only be moved within the bank(s) "27, 37, 38"
specified in the input mig.prj file for "Data" group.

ERROR: c0_qdriip_d[7](DataWrite) should not be allocated to bank 42.
The rule is, it can only be moved within the bank(s) "27, 37, 38"
specified in the input mig.prj file for "Data" group.

ERROR: c0_qdriip_bw[0](ByteWrite) should not be allocated to bank
42. The rule is, it can only be moved within the bank(s) "27, 37, 38"
specified in the input mig.prj file for "Data" group.

• Differential Pair Verification: If the system clock pins are not allocated to the
differential pairs, these error messages are displayed:

ERROR: "sys_clk_p" Should be allocated to either CC P pin or GC P
pin.

ERROR: "sys_clk_n" Should be allocated to either CC N pin or GC N
pin.

ERROR: "sys_clk_p" and "sys_clk_n" Should be allocated to either CC
or GC P/N pair.

ERROR: "clk_ref_p" Should be allocated to either CC P pin or GC P
pin.

ERROR: "clk_ref_n" Should be allocated to either CC N pin or GC N
pin.

ERROR: "clk_ref_p" and "clk_ref_n" Should be allocated to either CC
or GC P/N pair.

• Absence of Signals: If one or more signal pin pairs is missing and/or commented in
the given UCF against the selected inputs, the verification result indicates the absence
of these signal pin pairs as a warning.

The warning message format is “Signal <signal_name> is expected, but not present in
the UCF.” For example:

WARNING: Signal "qdriip_q[15]" expected, but not present in the UCF.

WARNING: Signal "qdriip_q [16]" expected, but not present in the
UCF.

WARNING: Signal "qdriip_q [17]" expected, but not present in the
UCF.

• Master Bank Verification: This verifies whether the provided master bank is valid for
the selected DCI banks in the column. This error message is displayed when the valid
master bank is not provided for the column:

ERROR: the master bank "23" provided is not valid master bank.
Following are the valid master bank "24, 25" for the column "1".

http://www.xilinx.com

208 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 2: QDRII+ SRAM Memory Interface Solution

Core Architecture
This section describes the design implementation of the PHY.

Overview
Figure 2-35 shows a high-level block diagram of the Virtex-6 FPGA QDRII+ SRAM
memory interface solution. This figure shows both the internal FPGA connections to the
client interface for initiating read and write commands, and the external interface to the
memory device.
X-Ref Target - Figure 2-35

Figure 2-35: High-Level Block Diagram of the Memory Interface Solution

UG406_c2_34_013011

K

K

W

R

SA

D

BW

Q

Physical
Interface

Client
Interface

qdr_bw_n

qdr_cq_p

qdr_cq_n

qdr_q

clk

sys_rst

rst_dk

clk_wr

clk_mem

mmcm_locked

iodelay_ctrl_rdy

CQ

QDRII+ SRAM

Virtex-6 FPGA

CQ

qdr_k_p

qdr_k_n

qdr_w_n

qdr_r_n

qdr_sa

qdr_d

user_wr_cmd

user_wr_addr

user_wr_data

user_wr_bw_n

user_rd_cmd

user_rd_addr

user_rd_valid

user_rd_data

user_cal_done

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 209
UG406 October 19, 2011

Core Architecture

The PHY is composed of these elements, as shown in Figure 2-36:

• Client interface

• Physical interface

• Read path

• Write path

The client interface (also known as the user interface) uses a simple protocol based entirely
on single data rate (SDR) signals to make read and write requests. Refer to Client Interface
for more details describing this protocol.

The physical interface generating the proper timing relationships and DDR signaling to
communicate with the external memory device, while conforming to QDRII+ protocol and
timing requirements. Refer to Physical Interface, page 213 for more details.

X-Ref Target - Figure 2-36

Figure 2-36: Components of the QDR II+ SRAM Memory Interface Solution

UG406_c2_35_022610

Client Interface

User
Device

Physical Interface

clk_wr

ck_mem

clk

sys_rst
qdr_k_p

qdr_k_n
Reset

Module
rst_dk

mmcm_locked

iodelay_ctrl_rdy

user_wr_cmd

user_rd_cmd

user_wr_addr

user_rd_addr

user_wr_data

user_wr_bw_n

user_rd_valid

user_cal_done

user_rd_data

QDR II+ SRAM
Device

Read Path

phy_top

user_top

Write Path

Clock
Generation

qdr_w_n

qdr_r_n

qdr_sa

qdr_d

qdr_bw_n

qdr_cq_p

qdr_cq_n

qdr_q

qdr_dll_off_n

http://www.xilinx.com

210 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 2: QDRII+ SRAM Memory Interface Solution

Within the PHY, logic is broken up into read and write paths. The write path generates the
QDRII+ signaling for generating read and write requests. This includes clocking, control
signals, address, data, and byte writes. The read path is responsible for calibration and
providing read responses back to the user with a corresponding valid signal. Refer to
Calibration, page 218 for more details describing this process.

Client Interface
The client interface connects the Virtex-6 FPGA user design to the QDRII+ SRAM memory
solutions core to simplify interactions between the user and the external memory device.

Command Request Signals

The client interface provides a set of signals used to issue a read or write command to the
memory device. These signals are summarized in Table 2-9. To accommodate for burst
length 2 devices, the client interface contains ports for two read and two write transactions.
When using burst length 4, only the ports ending in 0 should be used. Although the top
level contains debug signals, these are left out of Table 2-9 and are described further in
Debugging Virtex-6 FPGA QDRII+ SRAM Designs, page 226.

Table 2-9: Client Interface Request Signals

Signal Direction Description

user_cal_done Output Calibration Done. This signal indicates to
the user design that read calibration is
complete and the user can now initiate
read and write requests from the client
interface.

user_rd_addr0[ADDR_WIDTH – 1:0] Input Read Address. This bus provides the
address to use for a read request. It is valid
when user_rd_cmd0 is asserted.

user_rd_cmd0 Input Read Command. This signal is used to
issue a read request and indicates that the
address on port 0 is valid.

user_rd_data0[DATA_WIDTH × BURST_LEN – 1:0] Output Read Data. This bus carries the data read
back from the read command issued on
user_rd_cmd0.

user_rd_valid0 Output Read Valid. This signal indicates that data
read back from memory is now available
on user_rd_data0 and should be sampled.

user_rd_addr1[ADDR_WIDTH – 1:0] Input Read Address. This bus provides the
address to use for a read request. It is valid
when user_rd_cmd1 is asserted.

user_rd_cmd1 Input Read Command. This signal is used to
issue a read request and indicates that the
address on port 1 is valid.

user_rd_data1[DATA_WIDTH × 2 – 1:0] Output Read Data. This bus carries the data read
back from the read command issued on
user_rd_cmd1.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 211
UG406 October 19, 2011

Core Architecture

user_rd_valid1 Output Read Valid. This signal indicates that data
read back from memory is now available
on user_rd_data1 and should be sampled.

user_wr_addr0[ADDR_WIDTH – 1:0] Input Write Address. This bus provides the
address for a write request. It is valid
when user_wr_cmd0 is asserted.

user_wr_bw_n0[BW_WIDTH × BURST_LEN – 1:0] Input Write Byte Writes. This bus provides the
byte writes to use for a write request. It is
valid when user_wr_cmd0 is asserted.
These enables are active Low.

user_wr_cmd0 Input Write Command. This signal is used to
issue a write request and indicates that the
corresponding sideband signals on write
port 0 are valid.

user_wr_data0[DATA_WIDTH × BURST_LEN – 1:0] Input Write Data. This bus provides the data to
use for a write request. It is valid when
user_wr_cmd0 is asserted.

user_wr_addr1[ADDR_WIDTH – 1:0] Input Write Address. This bus provides the
address for a write request. It is valid
when user_wr_cmd1 is asserted.

user_wr_bw_n1[BW_WIDTH × 2 – 1:0] Input Write Byte Writes. This bus provides the
byte writes to use for a write request. It is
valid when user_wr_cmd1 is asserted.
These enables are active Low.

user_wr_cmd1 Input Write Command. This signal is used to
issue a write request and indicates that the
corresponding sideband signals on write
port 1 are valid.

user_wr_data1[DATA_WIDTH × 2 – 1:0] Input Write Data. This bus provides the data to
use for a write request. It is valid when
user_wr_cmd1 is asserted.

Table 2-9: Client Interface Request Signals (Cont’d)

Signal Direction Description

http://www.xilinx.com

212 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 2: QDRII+ SRAM Memory Interface Solution

Interfacing with the Core through the Client Interface

The client interface protocol is the same for using the port 0 or port 1 interface signals and
is shown in Figure 2-37.

Before any requests can be made, the user_cal_done signal must be asserted High, as
shown in Figure 2-37, no read or write requests can take place, and the assertion of
user_wr_cmd or user_rd_cmd on the client interface is ignored. A write request is issued
by asserting user_wr_cmd as a single cycle pulse. At this time, the user_wr_addr,
user_wr_data, and user_wr_bw_n signals must be valid. On the following cycle, a read
request is issued by asserting user_rd_cmd for a single cycle pulse. At this time,
user_rd_addr must be valid. After one cycle of idle time, a read and write request are both
asserted on the same clock cycle. In this case, the read to the memory occurs first, followed
by the write.

Figure 2-37 also shows data returning from the memory device to the user design. The
user_rd_vld signal is asserted, indicating that user_rd_data is now valid. This should be
sampled on the same cycle that user_rd_vld is asserted because the core does not buffer
returning data. This functionality can be added in by the user, if desired. The data returned
is not necessarily from the read commands shown in Figure 2-37 and is solely to
demonstrate protocol.

Core Clocking and Reset Requirements

The PHY requires several clocks to function properly. These clocks are described in
Table 2-10. As part of calibration, the reset signals used by the core must be tightly
controlled, and it is highly recommended that these signals are not altered. To control the
reset signals, a reset module exists within the PHY that synchronizes all reset signals and
then provides sends them back for use through the client interface. These signals are also
shown in Table 2-10.

X-Ref Target - Figure 2-37

Figure 2-37: Client Interface Protocol

UG406_c2_36_101609

user_wr_cmd

user_wr_addr

user_wr_data

user_wr_bw_n

user_rd_cmd

user_rd_addr

user_rd_data

user_cal_done

user_rd_vld

clk

WR_ADDR WR_ADDR

WR_DATA WR_DATA

WR_BW_N WR_BW_N

RD_ADDR RD_ADDR

RD_DATA

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 213
UG406 October 19, 2011

Core Architecture

Physical Interface
The physical interface is the connection from the FPGA memory interface solution to an
external QDRII+ SRAM device. The I/O signals for this interface are shown in Table 2-11.
These signals can be directly connected to the corresponding signals on the QDRII+ SRAM
device.

Table 2-10: Client Interface Clocking and Reset Signals

Signal Direction Description

clk Input Divided Clock. This clock is half the frequency of the
memory clock and is used as the main system clock.

clk_mem Input Full Frequency Memory Clock. This is a
full-frequency clock provided from the MMCM and
should only be used as an input to the OSERDES.

clk_wr Input Write Clock. This is a full-frequency clock provided
from the MMCM.

iodelay_ctrl_rdy Input IODELAY Controller Ready. This is a signal from the
IODELAY controller indicating that the IODELAYs
are ready to be used. The PHY is held in reset until
the controller is ready.

mmcm_locked Input MMCM Locked. This signal indicates that the
MMCM is locked.

rst_clk Output Divided Clock Reset. This is the synchronized reset
provided from the PHY back to the user’s client
interface.

sys_rst Input System Reset. This is the asynchronous reset to be
synchronized in the reset module within the PHY.
This signal must be held for at least three clk cycles.

Table 2-11: Physical Interface Signals

Signal Direction Description

qdr_cq_n Input QDR CQ#. This is the echo clock returned from the
memory derived from qdr_k_n. This clock is used by
the phase detector circuitry.

qdr_cq_p Input QDR CQ. This is the echo clock returned from the
memory derived from qdr_k_p. This clock is used by
the PHY to sample the rising edge data and qdr_q valid
signals.

qdr_d Output QDR Data. This is the write data from the PHY to the
QDR II+ memory device.

qdr_dll_off_n Output QDR DLL Off. This signal turns off the DLL in the
memory device.

qdr_bw_n Output QDR Byte Write. This is the byte write signal from the
PHY to the QDRII+ SRAM device.

qdr_k_n Output QDR Clock K#. This is the inverted input clock to the
memory device.

qdr_k_p Output QDR Clock K. This is the input clock to the memory
device.

http://www.xilinx.com

214 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 2: QDRII+ SRAM Memory Interface Solution

Interfacing with the Memory Device

Figure 2-38 shows the physical interface protocol for a four-word memory device.

In four-word burst mode:

• The address is in SDR format

• All signals as input to the memory are center aligned with respect to qdr_k_p

• The data for a write request follows on the next rising edge of qdr_k_p after an
assertion of qdr_w_n

• Byte writes are sampled along with data

• The qdr_qvld signal is asserted half a cycle before the return of data edge aligned to
the qdr_cq_n clock

• The qdr_q signal is edge aligned to qdr_cq_p and qdr_cq_n

Write Path
The write path to the QDRII+ SRAM includes the address, data, and control signals
necessary to execute a write operation. The address signals in four-word burst length
mode and control signals to the memory all use SDR formatting. The write data values
qdr_d and qdr_bw_n also utilize DDR formatting to achieve the required four-word burst
within the given clock periods. Figure 2-39 shows a high-level block diagram of the write
path and its submodules.

qdr_q Input QDR Data Q. This is the data returned from reads to
memory.

qdr_sa Output QDR Address. This is the address supplied for
memory operations.

qdr_w_n Output QDR Write. This is the write command to memory.

qdr_r_n Output QDR Read. This is the read command to memory.

Table 2-11: Physical Interface Signals (Cont’d)

Signal Direction Description

X-Ref Target - Figure 2-38

Figure 2-38: Four-Word Burst Length Memory Device Protocol

UG406_c2_37_081511

qdr_k_n

qdr_w_n

qdr_r_n

qdr_sa

qdr_d

qdr_bw_n

qdr_q

qdr_k_p

RD_ADDR WR_ADDR

DW1 DW2 DW3 DW4

DW1 DW2 DW3 DW4

BW1 BW2 BW3 BW4

qdr_cq_n

qdr_cq_p

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 215
UG406 October 19, 2011

Core Architecture

X-Ref Target - Figure 2-39

Figure 2-39: Write Path

UG406_c2_39_081210

CLKDIV

Q

OSERDES

From User

ODELAY

IOB

D

CLK

K
OBUF

CLKDIV

Q

OSERDES Clock
Generation

Address/Control
Generation

ODELAY

IOB

D

CLK

K#
OBUF

CLKDIV

Q

OSERDES

ODELAY

IOB

D

CLK

qdr_sa
OBUF

CLKDIV

Q

OSERDES

ODELAY

IOB

D

CLK

qdr_r_n
OBUF

CLKDIV

Q

OSERDES

ODELAY

IOB

D

CLK

qdr_w_n

OBUF

CLKDIV

Q

OSERDES

ODELAY

IOB

D

CLK

qdr_d wr_data 0/wr_data 1
OBUF

CLKDIV

Q

OSERDES

ODELAY

IOB

D

CLK

qdr_bw_n

OBUF

Data/Byte
Writes

Initialization
State Machine

wr_bw_n 0/wr_bw_n 1

From User
wr_cmd 0/wr_cmd 1

rd_cmd 0/rd_cmd 1

wr_addr 0/wr_addr 1

From MMCM

clk_mem

CLK

rd_add 0/rd_addr 1

wr_data 0/wr_data 1

Interface To
Read Path

init_done

To Read Path
int_rd_cmd_n

wr_bw_n 0/wr_bw_n 1

http://www.xilinx.com

216 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 2: QDRII+ SRAM Memory Interface Solution

I/O Architecture

The QDRII+ SRAM memory interface solution uses OSERDES primitives found in the
Virtex-6 FPGA I/O blocks for clocking all outputs of the PHY to the memory device.
Built-in Virtex-6 FPGA OSERDES functions simplify the task of generating the proper
clock, address, data, and control signaling for communication with the memory device.
The flow through the OSERDES uses two different input clocks to achieve the required
functionality. Data input ports D1/D2 or D3/D4 are clocked in using the clock provided on
the CLKDIV input port (clk in this case), and then passed through a parallel-to-serial
conversion block.

Figure 2-40 shows a high-level block diagram of this flow. The OSERDES is used to clock
all outputs from the PHY to the memory device.

Upon exiting the OSERDES, all the output signals must be presented center aligned with
respect to the generated clocks K/K#. For this reason, the IODELAY blocks within the I/O
blocks are also used in conjunction with the OSERDES to achieve center alignment. To
avoid inflicting too much jitter on the output signals, the data should not be moved.
Instead, the clock, address, and controls are shifted based on the burst length such that the
appropriate signals are center aligned.

In addition to generating the output signals to memory, the write path also assists the read
path with calibration. This logic performs reads and writes based on signals provided from
the read path indicating which stage of calibration the PHY is in. The state machine begins
by asserting the init_done signal indicating that calibration can begin. This signal is
asserted only after the OSERDES are ready to accept data. Stage one calibration is ready to
begin when cal_stage1_start is asserted. During this stage, the pattern 0x00FF_0F0F is
written to the memory device and then read back continuously until signaled to begin
stage two. During stage one, CQ is calibrated along with data Q. Stage two calibration
requires one write of the pattern 0xAAAA followed by one read to calibrate the valid signal
for read responses. To understand the full calibration process, see Calibration, page 218.

X-Ref Target - Figure 2-40

Figure 2-40: OSERDES Flow

UG406_c2_40_022610

Parallel-to-Serial
Conversion Block

Virtex-6 FPGA
OSERDES

D1

OQ

D2

D3

D4

CLK

CLKDIV
CLK

clk_mem

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 217
UG406 October 19, 2011

Core Architecture

Read Path
The CQ-based data capture scheme enables capture of read data from the memory at very
high clock rates. The read path captures the returning data and provides a valid strobe
back to the user indicating that the return data is on the client interface. Before any read can
take place, calibration must occur. Calibration is the main function of the read path and
occurs once on reset followed by continuous dynamic calibration. After the initial settings
are in place, dynamic calibration takes over to account for any voltage and temperature
changes that might affect the system’s once ideal settings.

Data Capture

Figure 2-41 shows a high-level block diagram of the path the data takes from entering the
FPGA until given to the user. To capture the data, the read path utilizes an IODELAY and
ISERDES that exist in every I/O block on the Virtex-6 FPGA. The IODELAY is used to shift
the clocks or data entering the FPGA to adjust its alignment relative to other signals.
Following this shift, data then passes through the ISERDES where data is captured using
CQ. After the data is retrieved, it enters a data alignment module and optionally realigns,
as seen in Figure 2-41. More details about this alignment are covered in Calibration. Data is
transferred from the clk_rd domain to the clk domain through a circular buffer built using
distributed RAM. In the clk domain, the valid signal is generated and provided with data
back to the user.

http://www.xilinx.com

218 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 2: QDRII+ SRAM Memory Interface Solution

Calibration
The calibration logic consists of a one-time initial calibration followed by continuous
real-time calibration. This logic provides the requested amount of delay on read data (Q)
and the read clocks (CQ/CQ#) to align the clock in the data valid window. This is done
using the IODELAY elements within the I/O block of the Virtex-6 FPGA. The IODELAY
elements delay the input in increments of 75 ps up to a maximum delay of 2.4 ns when
using a reference clock frequency of 200 MHz (-1 devices). For a reference clock frequency
of 300 MHz (in -3 devices), the delay increment is 52 ps for a maximum delay of 1.6 ns. An
IODELAYCTRL module is needed in conjunction with the IODELAYs to maintain the
resolution of the IODELAY elements.

Calibration begins after the echo clocks CQ/CQ# are stable from the memory device. The
amount of time required to wait for the echo clocks to become stable is based upon the
memory vendor and should be specified using the CLK_STABLE parameter to the core.
Prior to this point, all read path logic is held in reset. Calibration is performed in two
stages:

1. Calibration of CQ with respect to Q, followed by data realignment

2. Resolving latency and valid generation

X-Ref Target - Figure 2-41

Figure 2-41: Read Capture

UG406_c2_41_080310

IODELAY

CQ IOB
1/2

CQ IBUF
clk_cq

clk_rd

rd_data0

Phase

CLK_RD Domain CLK Domain

CLK_RD Domain CLK Domain

BUFIO

BUFR

CLKDIV

D

ISERDES
(networking

mode)

IODELAY Data
Align

From Stage 1
Calibration

Data IOB

Q0

Q1–Q4

CLK

CLKB

IBUF

Data
Circular
Buffer

Valid
Generator

rd_data1

CLKDIV

D

ISERDES
(networking

mode)

IODELAY

Data IOB

Q1

Q1–Q4

CLK

CLKB

IBUF

WRITE READ

To User

rd_valid0

clk

rd_valid1

To User

From CLK
BUFG

int_rd_cmd_n

From
Write Path

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 219
UG406 October 19, 2011

Core Architecture

Calibration of CQ/CQ# and Q and Data Realignment

When the data is returned from memory, it is initially edge aligned to the CQ/CQ# clocks.
To safely capture the data, a sample must be taken from the center of the data. Center
aligning the CQ clocks to Q provides the greatest possible margin for a successful capture.
To assist this stage of calibration, the write path performs an initial write of 0x0FF0_0F0F
followed by continuous reads from this location so that the calibration logic has predefined
data to calibrate against.

During calibration, delay adjustments are made from either delaying the clock or data
through the use of IODELAYs. The basic flow through this stage of calibration is:

1. Find the best taps setting to center align CQ and Q[0]’s rising and falling edge data for
each memory.

2. Perform a fine phase alignment of the ISERDES outputs and find the best tap setting
for CQ and Q[0].

3. Determine which phase alignment of the ISERDES outputs provides the best results.
(The best result is determined by what delays the data the least and what is most
accurately found in the center of Q).

4. Set the selected phase alignment.

5. Each subsequent bit is now calibrated to remove any skew differences relative to Q[0].

6. This process repeats for each memory device on the interface.

Resolving Latency and Valid Generation

This phase of calibration:

• Sets the latency for fixed-latency mode. See Customizing the Core, page 222 for more
details describing fixed latency mode.

• Matches the latency for each memory when wider memories are derived from small
memories.

• Sends the determined latency to the read valid generation logic.

This stage is required to generate the valid signal associated with the data on the client
interface. During this stage of calibration, a single write of 0xAAAA is written to memory
and read back. Doing this allows the read logic to count how many cycles elapse before the
expected data returns. The basic flow through this phase is:

1. Count cycles until the read data arrives for each memory device.

2. Determine what value to use as the fixed latency. This value can either be the set value
indicated by the user from the PHY_LATENCY parameter or the maximum latency
across all memory devices.

3. Calibrate the generation of the read valid signal. Using the value determined in the
previous step, delay the read valid signal to align with the read data for user.

4. Assert cal_done.

Dynamic Calibration

After calibration is complete, an ideal tap setting is found to center align the CQ clock to
the data. However, due to changes in voltage or temperature, this relationship can shift
over time and no longer be ideal. To compensate for this, real-time calibration is performed
to add or decrement taps to CQ when necessary.

http://www.xilinx.com

220 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 2: QDRII+ SRAM Memory Interface Solution

Reset Module
The reset module synchronizes all the reset signals across all clock domains. This includes
the resets from the client interface for the IODELAYCTRL reference clock, the system reset,
write path reset, and read path reset. This logic is contained within the PHY because strict
timing must be met on the read path reset with respect to the system reset due to the
synchronization logic between these two domains. In addition, the read path must remain
in reset until echo clocks CQ/CQ# are stable from the memory.

The system reset is provided asynchronously to the reset module and then gated with the
appropriate signals to use for synchronization across four different clock domains. All
reset signals used by the PHY are asynchronously asserted and synchronously deasserted.
Figure 2-42 shows the reset scheme used within the reset module.

Table 2-12 indicates the QDRII+ SRAM memory interface solution read latency.

X-Ref Target - Figure 2-42

Figure 2-42: Reset Synchronization

UG406_c2_42_081209

0 1 n

0

clk

rst_wr_clk

~mmcm_locked

~iodelay_ctrl_rdy

sys_reset

0 1 n

0

clk

rst_clk

~cq_stable

sys_reset

0 1 n

0

clk_rd

rst_clk_rd

~cq_stable

sys_reset

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 221
UG406 October 19, 2011

Core Architecture

IDELAYCTRL

An IDELAYCTRL is required in any bank that uses IODELAYs. IODELAYs are associated
with the data read group, data write group and address/control group. Any bank/clock
region where these signals are used requires an IDELAYCTRL.

The MIG tool instantiates one IODELAYCTRL and then uses the IODELAY_GROUP
attribute (see the iodelay_ctrl.v/.vhd module). Based on this attribute, the ISE
software properly replicates IODELAYCTRLs as needed within the design.

The IDELAYCTRL reference frequency varies based on the selected design frequency. If the
selected design frequency is 480 MHz and above, the IDELAYCTRL reference clock
frequency is 300 MHz, otherwise it is 200 MHz. If multi-controller designs (for example,
DDR3 SDRAM multi-controller designs or combinations of DDR3 SDRAM and QDRII
controllers) are generated such that one of the controller frequencies is 480 MHz and above
and the other controller frequency is below 480 MHz, then IDELAYCTRLs with reference
frequencies of both 200 MHz and 300 MHz are generated. When the MIG tool generates a
multi-controller design, the MIG tool only instantiates one IODELAYCTRL with this
primitive if only one of the 200 MHz or 300 MHz IODELAYCTRLs is required, and allows
the tools to replicate. If the design is generated such that both 200 MHz and 300 MHz
IODELACYCTRLs are required, the MIG tool instantiates two IODELAYCTRLs with
primitives and passes the IODELAY_GROUP parameters accordingly. The MIG tool
generates the design such that all 200 MHz IODELAY elements and IODELAYCTRLs use
the IODELAY_GROUP parameter value of IODELAY200_MIG and all 300 MHz
IODELAYCTRLs and IODELAYs use the IODELAY_GROUP parameter value of
IODELAY300_MIG. Based on whether the IODELAY_GROUP attribute is set, the ISE
software replicates the IODELAYCTRLs for each region where the IODELAY blocks exist.

Table 2-12: Read Latency of the QDRII+ SRAM Memory Interface Solution

Parameter
Number of

Half-Frequency
clk Cycles

Description

User command to
memory

3.5 1 half clk cycle to align the OSERDESE1 input
data.

2.5 half clk cycles of latency inside the
OSERDESE1.

Memory read
command to valid
data available in the
BUFR domain

4.5 1 half clk cycle (2 memory clk cycles) read
latency from the memory.

2 half clk cycles inside the ISERDESE1.

1.5 half clk cycles to align read data to the rising
edge of the ISERDESE1 capture clock (BUFR
half frequency clock).

Read data from the
BUFR domain to the
half clk cycle domain

5 3 half clk cycles for data transfer to the half clk
cycle domain through the circular buffer built
using distributed RAM.

1 half clk cycle to register circular buffer output
data.

1 half clk cycle to align the read output from all
memory devices to the same clock edge.

Total read latency 13

http://www.xilinx.com

222 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 2: QDRII+ SRAM Memory Interface Solution

Customizing the Core
The Virtex-6 FPGA QDRII+ SRAM memory interface solution is customizable to support
several configurations. The specific configuration is defined by Verilog parameters in the
top level of the core. These parameters are summarized in Table 2-13.

Table 2-13: Virtex-6 FPGA QDRII+ SRAM Memory Interface Solution Configurable Parameters

Parameter Value Description

ADDR_WIDTH This is the memory address bus width.

BURST_LEN 4 This is the memory data burst length.

CLK_PERIOD(1) 5,000–16,667 ps This is the FPGA fabric clock period (ps). This value
should be twice that of the memory device clock period
and is determined by the speed grade of the FPGA.

CLK_STABLE (See memory vendor) This is the number of cycles to wait until the echo clocks
are stable.

DATA_WIDTH This is the memory data bus width and can be set through
the MIG tool. A maximum DATA_WIDTH of 72 is
supported.

BW_WIDTH This must be set to DATA_WIDTH/9.

IODELAY_GRP This is a unique name for the IODELAY_CTRL that is
provided when multiple IP cores are used in the design.

DEVICE_ARCH virtex6 This indicates the targeted device family.

FIXED_LATENCY_MODE 0, 1 This indicates whether or not to use a predefined latency
for a read response from the memory to the client
interface. If set to 0, the minimum possible latency is used.

MEM_TYPE QDR2PLUS This indicates the type of QDR memory device attached.
QDR2PLUS is the only supported value for this
parameter.

NUM_DEVICES This is the number of memory devices.

PHY_LATENCY 19 to 30 This indicates the desired latency through the PHY for a
read from the time the read command is issued until the
read data is returned on the client interface.

REFCLK_FREQ 200.0, 300.0 This is the reference clock frequency for IODELAYCTRLs.
This value can be set to 200.0 for any speed grade device
or 300.0 for a -2 or -3 device. For more information, see the
IODELAYE1 Attribute Summary table in the Virtex-6
FPGA SelectIO Resources User Guide [Ref 4].

RST_ACT_LOW 0, 1 This is the active-Low or active-High reset.

SIM_CAL_OPTION “NONE”
“SKIP_CAL”
“FAST_CAL”

This parameter is only used during simulation. If this
parameter is set to a value other than NONE, it does not
work in hardware. This should only be used to speed up
simulations. See SIM_CAL_OPTION, page 224.

SIM_INIT_OPTION “NONE”
“SIM_MODE”

This parameter is used only during simulation to speed it
up. It should be set to “NONE” to work in hardware.

PHASE_DETECT “ON”
“OFF”

The phase detector logic compensates for any voltage and
temperature variation.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 223
UG406 October 19, 2011

Customizing the Core

FIXED_LATENCY_MODE

If desired, the PHY can operate in fixed-latency mode. This is done by setting
FIXED_LATENCY_MODE to 1. The latency is measured from when a read command is
issued on the physical interface to when the read response is present on the client interface.
When set to 1, the desired latency should be set in the PHY_LATENCY parameter.

PHY_LATENCY

This parameter indicates the desired latency from when a read command is issued on the
physical interface to when the read response is present on the client interface. This value is
only used when the FIXED_LATENCY_MODE parameter is also set. If the value of this
parameter is less then the minimum possible latency, the core issues an error through the
error port in the top level user_top module.

The best way to calculate the PHY_LATENCY value for a specific system is to run the
system with FIXED_LATENCY_MODE set to 0 and record the results of the dbg_valid_lat
debug signal. To guarantee the latency across multiple controllers, the largest value of

DEBUG_PORT “ON”
“OFF”

Turning on the debug port allows for use with the Virtual
I/O (VIO) of the ChipScope analyzer. This allows the user
to change the tap settings within the PHY based on those
selected though the VIO. This parameter is always set to
OFF in the sim_tb_top module of the sim folder,
because debug mode is not required for functional
simulations.

IBUF_LPWR_MODE “ON”
“OFF”

This enables or disables low power mode for the input
buffers.

IODELAY_HP_MODE “ON”
“OFF”

This enables or disables high-performance mode within
the IODELAY primitive. When set to OFF, the IODELAY
operates in low power mode at the expense of
performance.

INPUT_CLK_TYPE “DIFFERENTIAL”,
“SINGLE_ENDED”

This parameter indicates whether the system uses
single-ended or differential system clocks/reference
clocks. Based on the selected CLK_TYPE, the clocks must
be placed on the correct input ports. For differential
clocks, sys_clk_p/sys_clk_n must be used. For
single-ended clocks, sys_clk must be used.

CLKFBOUT_MULT_F This is the MMCM voltage-controlled oscillator (VCO)
multiplier. It is set by the MIG tool based on the frequency
of operation.

CLKOUT_DIVIDE This is the VCO output divisor for fast memory clocks.
This value is set by the MIG tool based on the frequency
of operation.

DIVCLK_DIVIDE This is the MMCM VCO divisor. This value is set by the
MIG tool based on the frequency of operation.

Notes:
1. The lower limit (maximum frequency) is pending characterization.

Table 2-13: Virtex-6 FPGA QDRII+ SRAM Memory Interface Solution Configurable Parameters (Cont’d)

Parameter Value Description

http://www.xilinx.com

224 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 2: QDRII+ SRAM Memory Interface Solution

dbg_valid_lat should be used as the value of PHY_LATENCY for all of the controllers in a
system.

SIM_CAL_OPTION

Core initialization during simulation can be greatly reducing by using the
SIM_CAL_OPTION parameter. Two simulation modes are supported. When set to
“FAST_CAL,” calibration is performed on only one bit per memory device, and this value
is used across the remaining data bits. When set to “SKIP_CAL,” no calibration is
performed and the incoming clocks and data are assumed to be aligned. This parameter
should be set to “NONE” when implementing the design to generate a bitstream, or the
core does not function properly in hardware.

Design Guidelines
While the Virtex-6 family offers many advanced I/O and clocking-related features to
greatly simplify memory interface design, attention must still be paid to basic board design
criteria for a reliable and high-performance interface.

Specifically, the source-synchronous read and write path interfaces require matched board
trace lengths for the interface clock, data, and control signals. For example, the trace
lengths of the QDRII+ SRAM input signals (qdr_k_p, qdr_k_n, qdr_w_n, qdr_r_n, qdr_sa,
qdr_bw_n, and qdr_d) must be well matched to present the control, address, and data lines
to the memory device with adequate setup and hold margins. The implementation of the
physical interface ensures that these signals are center aligned to the qdr_k_p and qdr_k_n
clock edges when leaving the FPGA device outputs. The board traces must ensure that this
relationship continues to the memory device inputs.

Similarly, the QDRII+ SRAM output signals (qdr_q, qdr_cq_p, qdr_cq_n) must have
well-matched trace lengths for the signals to all arrive edge aligned at the inputs to the
Virtex-6 FPGA. This trace length matching is critical to the implementation of the
direct-clocking read data capture methodology. Any reasonable board design tool can
match these traces within an acceptable tolerance with little effort.

Trace Length Requirements

Trace lengths described here are for high-speed operation and can be relaxed depending
on the application’s target bandwidth requirements. The package delay should be
included when determining the effective trace length. The most accurate and
recommended method for determining the delay is to use the L and C values for each pin
from the IBIS models. The delay value is determined as the square root of (L × C).
Alternatively, a less accurate method is to use the PARTGen utility. These internal delays
can be found using the FPGA Editor tool. These rules indicate the maximum skew between
QDRII+ SRAM signals:

• The maximum skew between any bit in the data bus, D, and its associated K/K#
clocks should be ±15 ps.

• The maximum skew between any Q and its associated CQ/CQ# should be ±15 ps.

• The maximum skew between any address and control signals and the corresponding
K/K# should be ±50 ps.

• There is no relation between CQ and the K clocks. K should be matched with D, and
CQ should be matched with Q (read data).

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 225
UG406 October 19, 2011

Design Guidelines

Pinout Requirements

After generating a core through the MIG tool, the most optimal pin out has been selected
for the design. Manual changes through the UCF are not recommended. However, if the
UCF needs to be altered, these rules must be taken into consideration:

• The K/K# clocks should be placed in the same bank as the address and control. For
maximum performance, this bank should be located on an inner column. For design
frequencies less than 300 MHz, address/control signals can be placed in the outer
column. (The address and control can be shared across multiple devices.)

• Write data (D) placement is done based on the address/control bank placement:

• When the address/control group is allocated in inner column banks, only the
inner column banks that reside one row above, one row below, and on the same
row of the allocated MMCM can be used for write data (D) selection.

• When the address/control group is allocated in outer column banks, only the
banks that lie one above and/or below the address/control bank can be used for
write data (D).

• The write data (D) and byte writes BW_N should be placed in the same bank for a
given memory device.

• CQ and CQ# must each be placed on the p-side of a multi-region clock-capable I/O.

• The CQ/CQ# clocks should be together in the same bank as data Q.

• If CQ/CQ#, and data Q do not all fit into one bank, any remaining bits of data Q
should be placed in an adjacent bank of the same column.

I/O Standards

The MIG tool generates the appropriate UCF for the core with select I/O standards based
on the type of input or output to the Virtex-6 FPGA. These standards should not be
changed. Table 2-14 contains a list of the ports together with the I/O standard used.

Table 2-14: I/O Standards

Signal(1) Direction I/O Standard

qdr_bw_n Output HSTL_I

qdr_cq_p, qdr_cq_n Input HSTL_I_DCI

qdr_d Output HSTL_I

qdr_k_p, qdr_k_n Output HSTL_I

qdr_q Input HSTL_I_DCI

qdr_r_n Output HSTL_I

qdr_sa Output HSTL_I

qdr_w_n Output HSTL_I

Notes:
1. All signals operate at 1.5V.

http://www.xilinx.com

226 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 2: QDRII+ SRAM Memory Interface Solution

Debugging Virtex-6 FPGA QDRII+ SRAM Designs
This section defines a step-by-step debugging procedure to assist in the identification and
resolution of any issues that might arise during each phase of the memory interface design
process.

Introduction
The QDRII+ memory interfaces in Virtex-6 FPGAs simplify the challenges associated with
memory interface design. However, every application environment is unique and proper
due diligence is required to ensure a robust design. Careful attention must be given to
functional testing through simulation, proper synthesis and implementation, adherence to
PCB layout guidelines, and board verification through IBIS simulation and signal integrity
analysis.

This section defines a step-by-step debugging procedure to assist in the identification and
resolution of any issues that might arise during each phase of the design process. Details
are provided on:

• Functional verification using the UNISIM simulation models

• Design implementation verification

• Board layout verification

• Using the QDRII+ SRAM physical layer to debug board-level issues

• General board-level debug techniques

The two primary issues encountered during verification of a memory interface are:

• Calibration not completing properly

• Data corruption during normal operation

Problems might be seen in simulation, hardware, or both due to various root causes.
Figure 2-43 shows the overall flow for debugging problems associated with these two
general types of issues.

Debug Tools
Many tools are available to debug memory interface design issues. This section indicates
which resources are useful for debugging a given situation.

X-Ref Target - Figure 2-43

Figure 2-43: Virtex-6 FPGA QDRII+ SRAM MIG Tool Debug Flowchart

UG406_c2_44_101609

Symptoms in Simulation/Hardware

- Calibration Failure
- Data Bit/Byte Corruption/Errors

Simulation Debug

Synthesis/Implementation Debug

Hardware Debug

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 227
UG406 October 19, 2011

Debugging Virtex-6 FPGA QDRII+ SRAM Designs

Example Design

QDRII+ SRAM design generation using the MIG tool produces an example design and a
user design. The example design includes a synthesizable testbench that has been fully
verified in simulation and hardware. This design can be used to observe the behavior of
the MIG tool design, and can also aid in identifying board-related problems. Quick Start
Example Design, page 176 provides complete details about the example design. This
section also describes using the example design to verify setup of a proper simulation
environment and to perform hardware validation.

Debug Signals

The MIG tool includes a Debug Signals Control option on the FPGA Options screen.
Enabling this feature allows calibration, tap delay, and read data signals to be monitored
using the ChipScope analyzer. Selecting this option port maps the debug signals to VIO
modules of the ChipScope analyzer in the design top module. Getting Started, page 176,
provides details on enabling this debug feature.

ChipScope Pro Tool

The ChipScope Pro tool inserts logic analyzer, bus analyzer, and VIO software cores
directly into the design. The ChipScope Pro tool allows the user to set trigger conditions to
capture application and the MIG tool signals in hardware. Captured signals can then be
analyzed through the ChipScope Pro Logic Analyzer tool [Ref 6].

Simulation Debug
Figure 2-44 shows the debug flow for simulation.

Verifying the Simulation Using the Example Design

The example design generated by the MIG tool includes a simulation testbench and
parameter file based on memory selection in the MIG tool, and a ModelSim .do script file.
The MIG tool does not provide a QDRII+ memory model. A QDRII+ memory model must
be provided and added to the simulation by the user. Refer to Quick Start Example Design,
page 176 for detailed steps on running the example design simulation. Successful
completion of this example design simulation verifies a proper simulation environment.
This shows that the simulation tool and Xilinx libraries are set up correctly. For detailed
information on setting up Xilinx libraries, refer to COMPXLIB in the Command Line Tools
User Guide [Ref 7] and the Synthesis and Simulation Design Guide [Ref 8]. For simulator tool
support, refer to the Virtex-6 FPGA Memory Interface Solutions Data Sheet [Ref 9].

X-Ref Target - Figure 2-44

Figure 2-44: Simulation Debug Flowchart

Verify Successful Simulation Using
Example Design. Identify any Issues with

Simulation Environment

Debug Issues with User Design Simulation

UG406_c2_45_101609

Open WebCase

http://www.xilinx.com

228 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 2: QDRII+ SRAM Memory Interface Solution

A working example design simulation completes memory initialization and runs traffic in
response to the testbench stimulus. Successful completion of memory initialization and
calibration results in the assertion of the cal_done signal. When this signal is asserted, the
testbench takes control and begins executing writes and reads according to its
parameterization.

Table 2-15 and Table 2-16 show the signals and parameters of interest, respectively, during
simulation.

When the SIM_INIT_OPTION is set to SIM_MODE, and the SIM_CAL_OPTION is set to
FAST_CAL, the MIG tool design executes an abbreviated calibration sequence. For the
design to properly initialize and calibrate the full memory array in hardware, the top-level
MIG tool design file (example_top.v/vhd) cannot use any abbreviated values for these
parameters. The MIG tool output properly sets the abbreviated values in the testbench and
the full range of values in the top-level design module.

Figure 2-45 shows a high-level view of a successful simulation using the provided example
design with the abbreviated simulation parameters set, as described in Table 2-15,
page 228. The simulation can be divided into these main sections: Memory Initialization,
Calibration, and Testbench.

Table 2-15: Signals of Interest During Simulation

Signal Name Usage

cal_done This signal indicates completion of calibration.

compare_error This signal indicates a mismatch between the data written from the
UI and data received during a read on the UI. This signal is a part of
the example design. A single error asserts this signal and is held
until the design is reset.

cmp_err This signal indicates a mismatch between the data written from the
UI and the data received during a read on the UI. This signal is a part
of the example design. This signal is asserted each time a data
mismatch occurs.

user_rd_addr This is the address provided for the read command.

user_rd_cmd This signal indicates that the read address is valid for a read
command.

user_rd_data This is the read data being returned from the memory device.

user_rd_valid This signal is asserted when user_rd_data is valid.

user_wr_addr This is the address provided for the write command.

user_wr_bw_n This signal is the byte write control.

user_wr_cmd This signal indicates that the write address and write data are valid
for a write command.

user_wr_data This is the write data for a write command.

Table 2-16: Parameters of Interest During Simulation

Signal Name Usage

SIM_INIT_OPTION This parameter sets the simulation initialization procedure.

SIM_CAL_OPTION This parameter sets the simulation calibration procedure.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 229
UG406 October 19, 2011

Debugging Virtex-6 FPGA QDRII+ SRAM Designs

Memory Initialization

The QDRII+ memories do not require an elaborate initialization procedure. However, the
user must ensure that the Doff_n signal is provided to the memory as required by the
vendor. The QDRII+ SRAM interface design provided by the MIG tool drives the Doff_n
signal from the FPGA. After the internal MMCM has locked after a wait period of 200 µs,
the Doff_n signal is asserted High. After the Doff_n signal assertion and following
CLK_STABLE (set to 2048) number of CQ clock cycles, commands are issued to the
memory.

For memory devices that require the Doff_n signal to be terminated at the memory and not
be driven from the FPGA, the user must perform the required termination procedure.

Calibration

Calibration completes read leveling, write calibration, and read enable calibration. This is
completed over two stages. This sequence successfully completes when the cal_done
signals asserts. For more details, refer to PHY, page 104.

The first stage performs per-bit read leveling calibration. The data pattern used during this
stage is 00ff00ff00ffff00. The data pattern is first written to the memory, as shown in
Figure 2-46.

X-Ref Target - Figure 2-45

Figure 2-45: Waveforms and Simulation Transcripts Showing Successful Example Design Completion

UG406_c2_46_102109

�������������� 	
���
 ����������� �
�� �
���

http://www.xilinx.com

230 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 2: QDRII+ SRAM Memory Interface Solution

This pattern is then continuously read back while the per-bit calibration is completed, as
shown in Figure 2-47.

The second stage performs a read enable calibration. The data pattern used during this
stage is AAAA. The data pattern is first written to the memory, and then read back for the
read enable calibration, as shown in Figure 2-48.

X-Ref Target - Figure 2-46

Figure 2-46: Writes for First Stage Read Calibration

UG406_c2_47_102109

X-Ref Target - Figure 2-47

Figure 2-47: Reads for First Stage Read Calibration

UG406_c2_48_102709

X-Ref Target - Figure 2-48

Figure 2-48: Write and Read for Second Stage Read Calibration

UG406_c2_49_102709

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 231
UG406 October 19, 2011

Debugging Virtex-6 FPGA QDRII+ SRAM Designs

An additional read is performed so the read bus is driven to a different value. This is
mostly required in hardware to make sure that the read calibration can distinguish the
correct data pattern.

After second stage calibration completes, cal_done asserts, signifying successful
completion of the calibration process.

Testbench

After cal_done asserts, the testbench takes control, writing to and reading from the
memory. The data written is compared to the data read back. Any mismatches trigger an
assertion of the error signal. Figure 2-49 shows a successful implementation of the
testbench with no assertions on error.

Debug Issues with User Design Simulation

After the simulation environment and parameter settings are verified by successful
simulation of the example design, issues with the user design simulation can be
investigated. Because the environment and parameters are verified to work properly,
calibration of the user design completes without error as long as no RTL changes exist.

Data Errors

Issues that might be seen with user design simulation exist within the generation of user
writes and reads. Thus, it is crucial to understand how to drive the UI to properly send
writes and reads. For more information, refer to User Interface, page 70 and Interfacing to
the Core, page 115.

X-Ref Target - Figure 2-49

Figure 2-49: Testbench Operation After Completion of Calibration

UG406_c2_50_102109

http://www.xilinx.com

232 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 2: QDRII+ SRAM Memory Interface Solution

Proper Write and Read Commands

When sending write and read commands, the user must properly assert and deassert the
corresponding UI inputs. Refer to User Interface, page 70 and Interfacing to the Core,
page 115 for full details. The testbench design provided within the example design can be
used as a further source of proper behavior on the UI.

To debug data errors on the QDRII+ SRAM interface, it is necessary to pull the UI signals
into the simulation waveform.

In the ModelSim Instance window, highlight u_ip_top to display the necessary UI signals
in the Objects window, as shown in Figure 2-50. Highlight the user interface signals noted
in Table 2-15, page 228, right-click, and select Add → To Wave → Selected Signals.

Figure 2-51 and Figure 2-52 show example waveforms of a write and read on both the user
interface and QDR interface.

X-Ref Target - Figure 2-50

Figure 2-50: ModelSim Instance Window

UG406_c2_51_102109

X-Ref Target - Figure 2-51

Figure 2-51: User Interface Write and Read

UG406_c2_52_102109

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 233
UG406 October 19, 2011

Debugging Virtex-6 FPGA QDRII+ SRAM Designs

Synthesis and Implementation Debug
Figure 2-53 shows the debug flow for synthesis and implementation.

Verify Successful Synthesis and Implementation

The example design and user design generated by the MIG tool include
synthesis/implementation script files and user constraint files (.ucf). These files should be
used to properly synthesize and implement the targeted design and generate a working
bitstream.

The synthesis/implementation script file, called ise_flow.bat, is located in both
example_design/par and user_design/par directories. Execution of this script runs
either the example design or the user design through synthesis, translate, MAP, PAR,
TRACE, and BITGEN. The options set for each of these processes are the only options that
have been tested with the QDRII+ SRAM MIG tool designs. A successfully implemented
design completes all processes with no errors (including zero timing errors).

X-Ref Target - Figure 2-52

Figure 2-52: QDRII+ Interface Write and Read

UG406_c2_53_102109

X-Ref Target - Figure 2-53

Figure 2-53: Synthesis and Implementation Debug Flowchart

Verify Successful Synthesis and
Implementation Using Example Design

Verify Any Modification to the MIG Output

Verify Successful Synthesis and
Implementation Using User Design

UG406_c2_54_101609

Verify Design Timing in TRACE

Open WebCase

http://www.xilinx.com

234 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 2: QDRII+ SRAM Memory Interface Solution

Verify Modifications to the MIG Tool Output

The MIG tool allows the user to select the FPGA banks for the memory interface signals.
Based on the banks selected, the MIG tool outputs a UCF with all required location
constraints. This file is located in both the example_design/par and
user_design/par directories and should not be modified.

The MIG tool outputs open source RTL code parameterized by top-level HDL parameters.
These parameters are set by the MIG tool and should not be modified manually. If changes
are required, such as decreasing or increasing the frequency, the MIG tool should be rerun
to create an updated design. Manual modifications are not supported and should be
verified independently in behavioral simulation, synthesis, and implementation.

Identifying and Analyzing Timing Failures

The MIG tool QDRII+ SRAM designs have been verified to meet timing using the example
design across a wide range of configurations. However, timing violations might occur,
such as when integrating the MIG tool design with the user’s specific application logic.

Any timing violations that are encountered must be isolated. The timing report output by
TRACE (.twx/.twr) should be analyzed to determine if the failing paths exist in the MIG
tool QDRII+ SRAM design or the UI (backend application) to the MIG tool design. If
failures are encountered, the user must ensure the build options (that is, XST, MAP, PAR)
specified in the ise_flow.bat file are used.

If failures still exist, Xilinx has many resources available to aid in closing timing. The
PlanAhead™ tool [Ref 10] improves performance and quality of the entire design. The
Xilinx Timing Constraints User Guide [Ref 11] provides valuable information on all available
Xilinx constraints.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 235
UG406 October 19, 2011

Debugging Virtex-6 FPGA QDRII+ SRAM Designs

Hardware Debug
Figure 2-54 shows the debug flow for hardware.

Verify Design Guidelines

See Design Guidelines, page 224 for specifications on termination, I/O standards, and
trace matching. The guidelines provided therein are specific to the QDRII+ SRAM. It is
important to verify that these guidelines have been referred to during board layout. Failure
to follow these guidelines or modifications to a MIG tool provided pinout, or both, can
result in problematic behavior in hardware as discussed in this debugging section.

Clocking

The external clock source should be measured to ensure frequency, stability (jitter), and
usage of the expected FPGA pin. The designer must ensure that the design follows all
clocking guidelines. If clocking guidelines have been followed, the interface should be run
at a slower speed. Not all designs or boards can accommodate slower speeds. Lowering
the frequency increases the marginal setup or hold time, or both, due to PCB trace
mismatch, poor signal integrity, or excessive loading. When lowering the frequency, the
MIG tool should be rerun to regenerate the design with the lower clock frequency. Portions
of the calibration logic are sensitive to the CLK_PERIOD parameter; thus, manual
modification of the parameter is discouraged.

Verify Board Pinout

The user should ensure that the pinout provided by the MIG tool is used without
modification. Then, the board schematic should be compared to the
<design_name>.pad report generated by PAR. This step ensures that the board pinout
matches the pins assigned in the implemented design.

X-Ref Target - Figure 2-54

Figure 2-54: Hardware Debug Flowchart

Verify Memory Implementation Guidelines
are Properly Followed

Run SI Simulation Using IBIS

Run Example Design

UG406_c2_55_102109

Isolate Bit Errors

Board Measurements

- Measure Signal Integrity
- Measure Supply and VREF Voltages
- Measure Bus Timing

Check Clocking/Run Interface at
Slower Frequency

Open WebCase

http://www.xilinx.com

236 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 2: QDRII+ SRAM Memory Interface Solution

Run Signal Integrity Simulation with IBIS Models

To verify that board layout guidelines have been followed, signal integrity simulations
must be run using the I/O buffer information specification (IBIS). These simulations
should always be run for both pre-board and post-board layouts. The purpose of running
these simulations is to confirm the signal integrity on the board.

The ML561 Hardware-Simulation Correlation chapter of the Virtex-5 FPGA ML561 Memory
Interfaces Development Board User Guide [Ref 12] can be used as a guideline. This chapter
provides a detailed look at signal integrity correlation results for the ML561 board. It can
be used as an example for signal integrity analysis. It also provides steps to create a
design-specific IBIS model to aid in setting up the simulations. While this guide is specific
to Virtex-5 devices and the ML561 development board, the principles therein can be
applied to Virtex-6 FPGA MIG designs.

Run the Example Design

The MIG tool provided example design is a fully verified design that can be used to test the
memory interface on the board. It rules out any issues with the backend logic interfacing
with the MIG tool core. In addition, the testbench provided by the MIG tool can be
modified to send out different data patterns that test different board-level concerns.

Debugging Common Hardware Issues

When calibration failures and data errors are encountered in hardware, the ChipScope
analyzer should be used to analyze the behavior of MIG tool core signals. For detailed
information about using the ChipScope analyzer, refer to the ChipScope Pro 11.1 Software
and Cores User Guide [Ref 14].

A good starting point in hardware debug is to load the provided example_design onto the
board in question. This is a known working solution with a testbench design that checks
for data errors. This design should complete successfully with the assertion of cal_done
and no assertions of compare_error. Assertion of cal_done signifies successful completion
of calibration while no assertions of compare_error signifies that the data is written to and
read from the memory compare with no data errors.

The cmp_err signal can be used to indicate if a single error was encountered or if multiple
errors are encountered. With each error encountered, cmp_err is asserted so that the data
can be manually inspected to help track down any issues.

Isolating Bit Errors

An important hardware debug step is to try to isolate when and where the bit errors occur.
Looking at the bit errors, these should be identified:

• Are errors seen on data bits belonging to certain CQ clock groups?

• Are errors seen on accesses to certain addresses of memory?

• Do the errors only occur for certain data patterns or sequences?

This can indicate a shorted or open connection on the PCB. This can also indicate an
SSO or crosstalk issue.

It might be necessary to isolate whether the data corruption is due to writes or reads. This
case can be difficult to determine because if writes are the cause, read back of the data is
bad as well. In addition, issues with control or address timing affect both writes and reads.
Some experiments that can be tried to isolate the issue are:

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 237
UG406 October 19, 2011

Debugging Virtex-6 FPGA QDRII+ SRAM Designs

• If the errors are intermittent, have the design issue a small initial number of writes,
followed by continuous reads from those locations. If the reads intermittently yield
bad data, there is a potential read problem.

• Check/vary only write timing:

• Check that the external termination resistors are populated on the PCB.

• Use ODELAY to vary the phase of D relative to the K clocks.

• Vary only read timing:

• Check the IDELAY values after calibration. Look for variations between IDELAY
values. IDELAY values should be very similar for Qs in the same CQS group.

• Vary the IDELAY taps after calibration for the bits that are returning bad data.
This affects only the read capture timing.

Debugging the Core
The Debug port is a set of input and output signals that either provide status (outputs) or
allow the user to make adjustments as the design is operating (inputs). When generating
the QDRII+ SRAM design through the MIG tool, an option is provided to turn the Debug
Port on or off. When the Debug port is turned off, the outputs of the debug port are still
generated but the inputs are ignored. When the Debug port is turned on, the inputs are
valid and must be driven to a logical value. Driving the signals incorrectly on the debug
port might cause the design to fail or have less read data capture margin.

When running the core in hardware, a few key signals should be inspected to determine
the status of the design. The dbg_phy_status bus described in Table 2-17 consists of status
bits for various stages of calibration. Checking the dbg_phy_status bus gives initial
information that can aid in debugging an issue that might arise, determining which
portion of the design to look at, or looking for some common issues.

Table 2-17: Physical Layer Simple Status Bus Description

Debug Port Signal Name Description If Problems Arise

dbg_phy_status[0] iodelay_ctrl_rdy IODELAY
blocks are ready
to be used.

Check that the IODELAY
clock is supplied properly
with the expected frequency.

dbg_phy_status[1] mmcm_locked MMCM has
locked and is
generating the
system clocks.

Check that the system clock
is supplied properly with the
expected frequency. Check
the polarity of the reset.

dbg_phy_status[2] init_done QDRII+ SRAM
initialization
sequence is
complete.

N/A

dbg_phy_status[3] cal_stage1_start Stage 1 read
calibration start
signal.

N/A

http://www.xilinx.com

238 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 2: QDRII+ SRAM Memory Interface Solution

The results of read calibration are provided as part of the Debug port as various output
signals. These signals can be used to capture and evaluate the results of read calibration.
Read calibration uses the IODELAY to center the capture clock in the data valid window
for captured data. The algorithm shifts the IODELAY values and looks for edges of the data
valid window on a per-bit basis as part of the calibration procedure.

DEBUG_PORT Signals

The top-level wrapper, user_top, provides several output signals that can be used to
debug the core if the debug option is checked when generating the design through the MIG
tool. Each debug signal output is prefixed with “dbg_.” The DEBUG_PORT parameter is
always set to OFF in the sim_tb_top module of the sim folder that disables the debug
option for functional simulations. These signals are listed in Table 2-18 along with
descriptions of the data they provide.

dbg_phy_status[4] cal_stage2_start Stage 2 read
calibration start
signal after
stage 1
calibration is
completed.

If this signal does not go
High, then stage 1 has not
completed. Make sure the
expected data is being
returned from the memory.

dbg_phy_status[5] dbg_pd_calib_start Phase detector
calibration start
signal.

If this signal does not go
High, then stage2 calibration
has not completed. Check the
IODELAY values set for
stage 1 read calibration and
check the data for stage 2.

dbg_phy_status[6] dbg_pd_calib_done Phase detector
calibration
complete.

Check the system clock
frequency as the phase
detector has a lower
frequency limit. (The phase
detector should be off below
250 MHz.)

dbg_phy_status[7] cal_done Calibration
complete.

N/A

Notes:
1. N/A indicates that as long as previous stages have completed this stage is also completed.

Table 2-17: Physical Layer Simple Status Bus Description (Cont’d)

Debug Port Signal Name Description If Problems Arise

Table 2-18: Core Debug Signals

Signal
Valid Clock

Domain
Direction Description

dbg_phy_wr_cmd_n[1:0] clk Output This active-Low signal is the internal
wr_cmd used for debug with the
ChipScope analyzer.

dbg_phy_rd_cmd_n[1:0] clk Output This active-Low signal is the internal
rd_cmd used for debug with the
ChipScope analyzer.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 239
UG406 October 19, 2011

Debugging Virtex-6 FPGA QDRII+ SRAM Designs

dbg_phy_addr[ADDR_WIDTH × 4 – 1:0] clk Output This is the control addresses bus
used for debug with the ChipScope
analyzer.

dbg_phy_wr_data[DATA_WIDTH × 4 – 1:0] clk Output This is the data being written that is
used for debug with the ChipScope
analyzer.

dbg_inc_cq_all clk Input This signal increments taps on all CQ
clock bits.

dbg_inc_cqn_all clk Input This signal increments taps on all
CQ# clock bits.

dbg_inc_q_all clk Input This signal increments taps on all
data Q bits.

dbg_dec_cq_all clk Input This signal decrements taps on all
CQ clock bits.

dbg_dec_cqn_all clk Input This signal decrements taps on all
CQ# clock bits.

dbg_dec_q_all clk Input This signal decrements taps on all
data Q bits.

dbg_inc_cq clk Input This signal increments the select
clock CQ bit.

dbg_dec_cq clk Input This signal decrements the select
clock CQ bit.

dbg_sel_cq[CQ_BITS – 1:0] clk Input This is the selected CQ bit to modify.

dbg_inc_cqn clk Input This signal increments the select
clock CQ# bit.

dbg_dec_cqn clk Input This signal decrements the select
clock CQ# bit.

dbg_sel_cqn[CQ_BITS – 1:0] clk Input This is the selected CQ# bit to
modify.

dbg_inc_q clk Input This signal increments the select data
Q bit.

dbg_dec_q clk Input This signal decrements the select
data Q bit.

dbg_sel_q[Q_BITS – 1:0] clk Input This is the selected Q bit to modify.

dbg_pd_off clk Input This input should be driven High to
disable the read phase detector.

dbg_cq_tapcnt[TAP_BITS × NUM_DEVICES – 1:0] clk Output This is the current CQ tap setting for
each device.

dbg_cqn_tapcnt[TAP_BITS × NUM_DEVICES – 1:0] clk Output This is the current CQ# tap setting
for each device.

Table 2-18: Core Debug Signals (Cont’d)

Signal
Valid Clock

Domain
Direction Description

http://www.xilinx.com

240 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 2: QDRII+ SRAM Memory Interface Solution

Read Stage 1 Calibration Debug

Table 2-19 indicates which bits within the dbg_rd_stage1_cal bus map to which debug
signals in the PHY. These signals can all be found within the phy_read_state1_cal
module and are all valid in the clk domain.

dbg_q_tapcnt[TAP_BITS × NUM_DEVICES – 1:0] clk Output This is the current Q tap setting for
each device.

dbg_clk_rd[NUM_DEVICES – 1:0] clk_rd Output This is the aligned read clock.

dbg_rd_stage1_cal[255:0] clk Output These are the debug signals for stage
1 calibration. See Table 2-19 for a
signal map.

Table 2-18: Core Debug Signals (Cont’d)

Signal
Valid Clock

Domain
Direction Description

Table 2-19: Read Stage 1 Debug Signal Map

Bits PHY Signal Name Description

dbg_rd_stage1_cal[4:0] tap_ctr_cs This is the current state of the tap-centering state machine.

dbg_rd_stage1_cal[18:5] cal_cs This is the current state of the calibration stage 1 state
machine.

dbg_rd_stage1_cal[23:19] cq_dly_tap This is the current tap setting for the active CQ clock.

dbg_rd_stage1_cal[28:24] cqn_dly_tap These are the current tap settings for the active CQ# clock.

dbg_rd_stage1_cal[33:29] q_dly_tap These are the current tap settings for the active Q data.

dbg_rd_stage1_cal[34] window_vld This bit indicates if the data being captured is valid for the
target rising or falling window.

dbg_rd_stage1_cal[35] opp_window_vld This bit indicates if the data being captured is valid for the
opposite of the targeted rising or falling window.

dbg_rd_stage1_cal[36] data_rdy This signal indicates when all tap adjustments are in place.

dbg_rd_stage1_cal[37] en_tap_adj This bit enables a tap adjustment.

dbg_rd_stage1_cal[38] found_left0 This bit indicates that the left0 edge is found. The left0 edge
is the left edge of the data window and is found by
delaying the clock.

dbg_rd_stage1_cal[39] found_left1 This bit indicates that the left1 edge is found. The left1 edge
is the left edge of the data window and is found by
delaying the data.

dbg_rd_stage1_cal[40] found_right This bit indicates that the right edge of the data window is
found by delaying the clock.

dbg_rd_stage1_cal[41] try_clk_inv This bit indicates that no definite valid tap setting was
found, and clock inversion is either required or will be tried
for better results.

dbg_rd_stage1_cal[42] tap_offset This is the distance from the true middle for the selected
setting.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 241
UG406 October 19, 2011

Debugging Virtex-6 FPGA QDRII+ SRAM Designs

dbg_rd_stage1_cal[43] optimal_tap This bit indicates the optimal tap setting of the current
clock or data bit being calibrated.

dbg_rd_stage1_cal[44] cdt_selected This bit indicates if delaying the clock achieves the best
result. If not asserted, it indicates that delaying the data
provides a better result.

dbg_rd_stage1_cal[45] ctr_done This bit indicates that the tap centering state machine is
complete and has found the tap settings for the data edges.

dbg_rd_stage1_cal[46] q_mem_0 This bit indicates if the first bit in the memory component
is being calibrated.

dbg_rd_stage1_cal[47] re_captured This bit indicates when the rising edge has been captured.

dbg_rd_stage1_cal[48] fe_captured This bit indicates when the falling edge has been captured.

dbg_rd_stage1_cal[49] det_opt_done This bit indicates when the optimal Q0 settings have been
determined.

dbg_rd_stage1_cal[50] det_ovr_done This bit indicates when the overall Q0 settings have been
determined.

dbg_rd_stage1_cal[51] qbit_det_done This bit indicates when the current Q tap settings have been
determined.

dbg_rd_stage1_cal[52] qbit_set_done This bit indicates when the Q bit tap setting no longer
needs adjustments.

dbg_rd_stage1_cal[57:53] rei_optimal_tap These are the optimal tap settings from the tap centering
state machine for the rising edge data.

dbg_rd_stage1_cal[62:58] fe_optimal_tap These are the optimal tap settings from the tap centering
state machine for the falling edge data.

dbg_rd_stage1_cal[63] rei_cdt_selected This bit indicates if the optimal tap setting for the rising
edge data required clock delay for centering. If it is not
asserted, data delay was required to center align.

dbg_rd_stage1_cal[64] fe_cdt_selected This bit indicates if the optimal tap setting for the falling
edge data required clock delay for centering. If it is not
asserted, data delay was required to center align.

dbg_rd_stage1_cal[65] q_bit_clkinv This is the ISERDES clk/clkb polarity inversion control.

dbg_rd_stage1_cal[66] polarity_done This bit indicates when the polarity change is done and
fully propagated to the clk_rd domain.

dbg_rd_stage1_cal[67] cal_rise This bit indicates if the rising edge is being calibrated
against. If not asserted, falling edge data is being calibrated.

dbg_rd_stage1_cal[72:68] left0_tap This is the tap setting for the left edge of the data window
found by delaying the clock.

dbg_rd_stage1_cal[77:73] left1_tap This is the tap setting for the left edge of the data window
found by delaying the data.

dbg_rd_stage1_cal[82:78] right_tap This is the tap setting for the right edge of the data window
found by delaying the clock.

Table 2-19: Read Stage 1 Debug Signal Map (Cont’d)

Bits PHY Signal Name Description

http://www.xilinx.com

242 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 2: QDRII+ SRAM Memory Interface Solution

dbg_rd_stage1_cal[87:83] re_optimal_tap These are the optimal tap settings from the tap centering
state machine for the rising edge data.

dbg_rd_stage1_cal[88] re_cdt_selected This bit indicates if the optimal tap setting for the rising
edge data required clock delay for centering. If it is not
asserted, data delay was required to center align.

dbg_rd_stage1_cal[89] invert_clk This bit indicates if the ISERDES clk/clkb inputs were
inverted.

dbg_rd_stage1_cal[90] rise_cdt_delayed This bit indicates that the rising edge data (with or without
clock inversion) was center aligned by delaying the clock.

dbg_rd_stage1_cal[95:91] cq_tap These are the CQ tap settings to be loaded in the IODELAY
for the target CQ.

dbg_rd_stage1_cal[100:96] cqn_tap These are the CQ# tap settings to be loaded in the
IODELAY for the target CQ#.

dbg_rd_stage1_cal[105:101] q_tap These are the Q tap settings to be loaded in the IODELAY
for the target Q.

dbg_rd_stage1_cal[106] capture_adj This bit indicates that adjustment values should be loaded
for the tap settings.

dbg_rd_stage1_cal[107] load_init This bit indicates that the previous tap settings should be
loaded.

dbg_rd_stage1_cal[108] prev_adj_req This bit indicates that adjustments to the tap settings for the
previous Q bits are needed.

dbg_rd_stage1_cal[113:109] prev_q_adj These bits indicate by how much the previous Q bits must
be adjusted overall.

dbg_rd_stage1_cal[118:114] q_adj_val These bits indicate how many adjustments remain for the Q
bit currently being adjusted.

dbg_rd_stage1_cal[119] q_bit_adj_done This bit indicates that adjustments to the previous Q bits
have been completed.

dbg_rd_stage1_cal[120] phase0_data_vld This bit indicates that a phase setting of 0 in the
phy_read_data_align module provides valid data for
the target device.

dbg_rd_stage1_cal[121] phase1_data_vld This bit indicates that a phase setting of 1 in the
phy_read_data_align module provides valid data for
the target device.

dbg_rd_stage1_cal[122] phase_error This bit indicates that the target CQ# indicator is stable and
control can be issued for the IODELAY.

dbg_rd_stage1_cal[123] c_num_rdy This bit indicates that the target CQ indicator is stable and
control can be issued for the IODELAY.

dbg_rd_stage1_cal[124] q_bit_rdy This bit indicates that the target Q indicator is stable and
control can be issued for the IODELAY.

dbg_rd_stage1_cal[125] cq_num_ce This is the IODELAY clock enable for the target CQ.

dbg_rd_stage1_cal[126] cqn_num_ce This is the IODELAY clock enable for the target CQ#.

Table 2-19: Read Stage 1 Debug Signal Map (Cont’d)

Bits PHY Signal Name Description

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 243
UG406 October 19, 2011

Debugging Virtex-6 FPGA QDRII+ SRAM Designs

Within the read path are some additional signals that can be used for more extensive
debug. These signals can be accessed from the phy_read_top module and are listed in
Table 2-20.

dbg_rd_stage1_cal[127] q_bit_ce This is the IODELAY clock enable for the target Q.

dbg_rd_stage1_cal[128] tap_done This bit indicates that any IODELAYs that had taps
incremented or decremented from the calibration logic
have had adequate time to take effect.

dbg_rd_stage1_cal[129] load_done This bit indicates that any IODELAYs that were loaded
with new tap settings issued by the calibration logic have
had adequate time to take effect.

dbg_rd_stage1_cal[134:130] cq_num_load These bits indicate the CQ IODELAY load value for the
target cq_num.

dbg_rd_stage1_cal[135] cq_num_rst This bit indicates that the target cq_num CQ IODELAY
should be reset.

dbg_rd_stage1_cal[140:136] cqn_num_load These bits indicate the CQ# IODELAY load value for the
target cq_num.

dbg_rd_stage1_cal[141] cqn_num_rst This bit indicates that the target cq_num CQ# IODELAY
should be reset.

dbg_rd_stage1_cal[145:141] q_bit_load These bits indicate the Q IODELAY load value for the target
q bit.

dbg_rd_stage1_cal[146] q_bit_rst This bit indicates that the target q-bit Q IODELAY should
be reset.

dbg_rd_stage1_cal[147] rst_done This bit indicates that any IODELAY resets that were issued
by the calibration logic have had adequate time to take
effect.

dbg_rd_stage1_cal[152:148] window_size These bits indicate the size of the data window in number
of taps.

dbg_rd_stage1_cal[255:148] – These bit are unused.

Table 2-19: Read Stage 1 Debug Signal Map (Cont’d)

Bits PHY Signal Name Description

Table 2-20: Additional Read Path Debug Signals

Signal Module
Valid Clock

Domain
Description

dbg_valid_lat[4:0] phy_read_vld_gen clk This is the latency in cycles of the
delayed read command.

dbg_cq_num[CQ_BITS – 1:0] phy_read_stage1_cal clk This signal indicates the current
CQ/CQ# being calibrated.

dbg_q_bit[Q_BITS – 1:0] phy_read_stage1_cal clk This signal indicates the current
Q being calibrated.

http://www.xilinx.com

244 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 2: QDRII+ SRAM Memory Interface Solution

dbg_error_max_latency[NUM_DEVICES – 1:0] phy_read_stage2_cal clk This signal indicates that the
latency could not be measured
before the counter overflowed.
There is one error bit for each
device.

dbg_error_adj_latency phy_read_stage2_cal clk This signal indicates that the
target PHY_LATENCY could not
be achieved.

dbg_stage2_cal[127:0] phy_read_stage2_cal clk This signal is unused, but
phy_read_stage2_cal signals can
be added if debug is required.

dbg_phase[NUM_DEVICES – 1:0] phy_read_data_align clk_rd This signal indicates whether or
not to realign the data to correct
the CLK/CLKB relationship
relative to the CLKDIV in the
ISERDES. There is one
dbg_phase bit per device.

dbg_inc_latency[NUM_DEVICES – 1:0] phy_read_dcb clk This signal indicates that latency
through the DCB should be
increased. There is one
increment latency signal for each
device, and they are all
concatenated together.

dbg_dcb_wr_ptr[NUM_DEVICES × 5 – 1:0] phy_read_dcb clk_rd This is the write pointer into the
data block RAM. The pointer for
each device is four bits long and
concatenated together.

dbg_dcb_rd_ptr[NUM_DEVICES × 5 – 1:0] phy_read_dcb clk This is the read pointer into the
data block RAM. The pointer for
each device is four bits long and
concatenated together.

dbg_dcb_din[NUM_DEVICES ×
MEMORY_WIDTH × 4 – 1:0]

phy_read_dcb clk_rd This is the data input into the
data circular buffer (DCB). The
data for the DCB in each device
is MEMORY_WIDTH × 4 and
each is concatenated together.

dbg_dcb_dout[NUM_DEVICES ×
MEMORY_WIDTH × 4 – 1:0]

phy_read_dcb clk This is the data output from the
DCB. The data for the DCB in
each device is
MEMORY_WIDTH × 4 and each
is concatenated together.

Table 2-20: Additional Read Path Debug Signals (Cont’d)

Signal Module
Valid Clock

Domain
Description

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 245
UG406 October 19, 2011

Debugging Virtex-6 FPGA QDRII+ SRAM Designs

When checking the results of read calibration check the tap values for the capture clock
(cq_dly_tap and cqn_dly_tap) and the tap settings for each data bit (q_dly_tap). For a
single clock group, the IODELAY tap settings should not vary widely. Figure 2-55 shows
stage 1 read calibration running for Q bit 0, as well as some signals of interest.

Manual control signals are provided in the debug port for adjusting IODELAY tap values
during normal operation. These can be adjusted to check for issues or to measure the data
valid window timing using the VIO port of the ChipScope analyzer that is provided along
with the Debug port.

Board Measurements

The signal integrity of the board and bus timing must be analyzed. The ML561
Hardware-Simulation Correlation chapter of the Virtex-5 FPGA ML561 Memory Interfaces
Development Board User Guide [Ref 12] describes expected bus signal integrity. While this
guide is specific to Virtex-5 devices and the ML561 development board, the principles
therein can be applied to Virtex-6 FPGA MIG tool designs.

Other important board measurements are the reference voltage levels. It is important that
these voltage levels are measured when the bus is active. These levels can be correct when
the bus is idle, but might drop when the bus is active.

X-Ref Target - Figure 2-55

Figure 2-55: ChipScope Analyzer Capture of Stage 1 Read Calibration

UG406_c2_56_102109

http://www.xilinx.com

246 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 2: QDRII+ SRAM Memory Interface Solution

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 247
UG406 October 19, 2011

Chapter 3

RLDRAM II Memory Interface Solution

Introduction
The RLDRAM II memory interface solution is a physical layer for interfacing
Virtex®-6 FPGA user designs to RLDRAM II devices. RLDRAM II memory can transfer up
to two, four, or eight words of data per request and is commonly used in applications such
as look-up tables (LUTs), L3 cache, and graphics.

The RLDRAM II memory solutions core is composed of a user interface (UI), memory
controller (MC) and physical layer (PHY) that takes simple user commands and converts
them to the RLDRAM II protocol before sending them to the memory. Unique capabilities
of the Virtex-6 family allow the PHY to maximize performance and simplify read data
capture within the FPGA. The full solution is complete with a synthesizable reference
design.

This chapter describes the core architecture and information about using, customizing, and
simulating a LogiCORE™ IP RLDRAM II memory interface core for the Virtex-6 FPGA.
Although this soft memory controller core is a fully verified solution with guaranteed
performance, termination and trace routing rules for PCB design need to be followed to
have the best design. For detailed board design guidelines, see Design Guidelines,
page 302.

For detailed information and updates about the Virtex-6 FPGA RLDRAM II memory
interface core, refer to the Virtex-6 FPGA data sheets [Ref 9] [Ref 13] on the Virtex-6 FPGA
memory interface product page.

Getting Started
This section provides a step-by-step guide to using the CORE Generator™ tool to generate
an RLDRAM II memory interface core in a Virtex-6 device, run the design through
implementation with the Xilinx tools, and simulate the example design using the provided
synthesizable testbench.

System Requirements
These are needed to implement the RLDRAM II memory interface core:

• Windows XP Professional (32-/64-bit)

• ISE® Design Suite, version 13.3

http://www.xilinx.com

248 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 3: RLDRAM II Memory Interface Solution

Customizing and Generating the Core

Generation through the Graphical User Interface

The Memory Interface Generator is a self-explanatory wizard tool that can be invoked
under the CORE Generator software. This section is intended to help in understanding the
various steps involved in using the MIG tool.

These steps should be followed to generate a Virtex-6 FPGA RLDRAM II design:

1. Launch the CORE Generator software by selecting
Start → Xilinx ISE Design Suite 13.3 → ISE → Accessories →
CORE Generator (Figure 3-1).

2. Choose File → New project to open the New Project dialog box. Create a new project
named Virtex6_MIG_Example_Design (Figure 3-2).

X-Ref Target - Figure 3-1

Figure 3-1: Xilinx CORE Generator Software

X-Ref Target - Figure 3-2

Figure 3-2: New CORE Generator Software Project

UG406_c3_01_041411

UG406_c3_02_081109

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 249
UG406 October 19, 2011

Getting Started

3. Enter a project name and location. Click Save (Figure 3-3).

4. Select these project options for the part (Figure 3-4):

a. Family: Virtex-6

b. Device: xc6vlx240t

c. Package: ff1156

d. Speed Grade: -2

X-Ref Target - Figure 3-3

Figure 3-3: New Project Menu

X-Ref Target - Figure 3-4

Figure 3-4: CORE Generator Software Project Options

UG406_c3_03_081109

UG406_c3_04_081109

http://www.xilinx.com

250 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 3: RLDRAM II Memory Interface Solution

5. Select Generation from the menu on the left. From this menu, select Verilog or VHDL
as the Design Entry and ISE for the Vendor Flow Setting. Click OK to finish the Project
Options setup (Figure 3-5).

6. Select Memory Interface Generator (MIG) by expanding Memories & Storage
Elements (Figure 3-6).

X-Ref Target - Figure 3-5

Figure 3-5: CORE Generator Software Design Flow Settings

X-Ref Target - Figure 3-6

Figure 3-6: Virtex-6_MIG_Example_Design Project Page

UG406_c3_05_081109

UG406_c3_06_041511

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 251
UG406 October 19, 2011

Getting Started

7. Launch the MIG tool wizard by selecting
Memories & Storage Elements → Memory Interface Generators → MIG
(Figure 3-7).

8. The options screen in the CORE Generator software displays the details of the selected
CORE Generator software options that are selected before invoking the MIG tool
(Figure 3-8).

9. Click Next to display the Output Options window.

X-Ref Target - Figure 3-7

Figure 3-7: Starting the MIG Tool Wizard

X-Ref Target - Figure 3-8

Figure 3-8: Virtex-6 FPGA Memory Interface Generator Front Page

UG406_c3_07_041511

UG406_c3_08_081109

http://www.xilinx.com

252 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 3: RLDRAM II Memory Interface Solution

MIG Tool Output Options

1. Select the Create Design radio button to create a new memory core. Enter a
component name in the Component Name field (Figure 3-9).

The MIG tool outputs are generated with the folder name <component name>.

Note: Only alphanumeric characters can be used for <component name>. Special characters
cannot be used. This name should always start with an alphabetical character and can end with
an alphanumeric character.

2. Click Next to display the Pin Compatible FPGAs window.

X-Ref Target - Figure 3-9

Figure 3-9: MIG Tool Output Options

UG406_c1_09_022610

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 253
UG406 October 19, 2011

Getting Started

Pin Compatible FPGAs

The Pin Compatible FPGAs window lists FPGAs in the selected family having the same
package. If the generated pinout from the MIG tool needs to be compatible with any of
these other FPGAs, this option should be used to select the FPGAs with which the pinout
has to be compatible (Figure 3-10).

1. Select any of the compatible FPGAs in the list. Only the common pins between the
target and selected FPGAs are used by the MIG tool. The name in the text box signifies
the target FPGA selected.

2. Click Next to display the Memory Selection window.

X-Ref Target - Figure 3-10

Figure 3-10: Pin-Compatible Virtex-6 FPGAs

UG406_C3_10_081109

http://www.xilinx.com

254 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 3: RLDRAM II Memory Interface Solution

Creating the Virtex-6 FPGA RLDRAM II Memory Design

Memory Selection

This page displays all memory types that are supported by the selected FPGA family.

1. Select the RLDRAM II controller type.

2. Click Next to display the Controller Options window (Figure 3-11).
X-Ref Target - Figure 3-11

Figure 3-11: Memory Type and Controller Selection

UG406_c3_11_072009

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 255
UG406 October 19, 2011

Getting Started

Controller Options

This page shows the various controller options that can be selected (Figure 3-12).

The controller options page also contains these pull-down menus to modify different
features of the design:

• Frequency: This feature indicates the operating frequency for all the controllers
(Figure 3-13). The frequency block is limited by factors such as the selected FPGA and
device speed grade.

X-Ref Target - Figure 3-12

Figure 3-12: Controller Options

UG406_c3_12_041511

X-Ref Target - Figure 3-13

Figure 3-13: Frequency Selection

UG406_c3_13_041511

http://www.xilinx.com

256 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 3: RLDRAM II Memory Interface Solution

• Memory Type: This option selects the memory type for the design. Only common I/O
(CIO) devices are supported. (Figure 3-14).

• Memory Part: This option selects the memory part for the design. Selections can be
made from the list, or if the part is not listed, a new part can be created (Figure 3-15).

• Data Width: The data width value can be selected here based on the memory part
selected. The MIG tool supports values in multiples of the individual device data
widths (Figure 3-16).

• Data Mask: This option allocates data mask pins when selected (Figure 3-17). This
option should be deselected to deallocate data mask pins and increase pin efficiency.
This option is disabled for memory parts that do not support data mask.

X-Ref Target - Figure 3-14

Figure 3-14: Memory Type Selection

X-Ref Target - Figure 3-15

Figure 3-15: Memory Part Selection

X-Ref Target - Figure 3-16

Figure 3-16: Data Width Selection

X-Ref Target - Figure 3-17

Figure 3-17: Data Mask Selection

UG406_c3_14_072009

UG406_c3_15_041511

UG406_c3_16_052010

UG406_c3_17_072009

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 257
UG406 October 19, 2011

Getting Started

• Latency Mode: If fixed latency through the core is needed, the Fixed Latency Mode
option allows the user to select the desired latency. This option can be used if the user
design needs a read response returned in a predictable number of clock cycles. To use
this mode, select the Fixed Latency Mode box. After enabling fixed latency, the
pull-down box allows the user to select the number of cycles until the read response is
returned to the user. This value ranges from 19 to 30 cycles (Figure 3-18). If Fixed
Latency Mode is not used, the core uses the minimum number of cycles through the
system.

X-Ref Target - Figure 3-18

Figure 3-18: Latency Selection

UG406_c3_18_072009

http://www.xilinx.com

258 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 3: RLDRAM II Memory Interface Solution

Setting RLDRAM II Memory Parameter Option

This feature allows the selection of various memory mode register values, as supported by
the controller’s specification (Figure 3-19).

The mode register value is loaded into the load mode register during initialization.

• Configuration: This option sets the configuration value that is associated with write
and read latency values. Values of 1, 2, and 3 are available that are controlled based on
the selected design frequency.

X-Ref Target - Figure 3-19

Figure 3-19: Setting Memory Mode Options

UG406_c3_19_052010

X-Ref Target - Figure 3-20

Figure 3-20: Configuration Selection

UG406_c3_72_052010

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 259
UG406 October 19, 2011

Getting Started

• Burst Length: This option sets the length of a burst for a single memory transaction.
This option is a trade-off between granularity and bandwidth and should be
determined based on the application. Values of 4 and 8 are available (Figure 3-21).

• Address Multiplexing: This option minimizes the number of address pins required
for a design, because the address is provided using less pins but over two consecutive
clock cycles. This option is not supported with a burst length of 2 (Figure 3-22).

• DLL Reset: This option turns off the DLL inside the memory device allowing the
memory to run at much lower frequencies. This option is not supported; thus, it is
always set to DLL_ENABLE. (Figure 3-23).

• Impedance Matching: This option is used to determine how the memory device tunes
its outputs, either via an internal setting or using an external reference resistor
connected to the ZQ input of the memory device (Figure 3-24).

X-Ref Target - Figure 3-21

Figure 3-21: Burst Length Selection

X-Ref Target - Figure 3-22

Figure 3-22: Address Multiplexing Selection

X-Ref Target - Figure 3-23

Figure 3-23: DLL Reset Selection

X-Ref Target - Figure 3-24

Figure 3-24: Impedance Matching Selection

UG406_C3_20_081109

UG406_c3_21_072009

UG406_C3_22_081109

UG406_c3_23_072009

http://www.xilinx.com

260 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 3: RLDRAM II Memory Interface Solution

On-Die Termination: This option is used to apply termination to the DQ and DM signals
at the memory device during write operations. When set, the memory device dynamically
switches off ODT when driving the bus during a read command (Figure 3-25).

Click Next to display the FPGA Options window (Figure 3-26).

X-Ref Target - Figure 3-25

Figure 3-25: On-Die Termination Selection

UG406_c3_24_072009

X-Ref Target - Figure 3-26

Figure 3-26: FPGA Options

UG406_c3_25_052010

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 261
UG406 October 19, 2011

Getting Started

• System Clock: The MIG tool supports the use of differential system and reference
clocks or single-ended clocks. This should be set to the type of input clock that will be
used (Figure 3-27).

• Debug Signals Control: This option indicates whether the ChipScope™ analyzer
should be incorporated into the generated design (Figure 3-28). See Debugging
Virtex-6 FPGA RLDRAM II Memory Designs, page 304 for more details on the signals
that are provided when this option is turned on.

• Internal Vref Selection. Internal Vref can be used for data read banks to allow the use
of the VREF pins for normal I/O usage.

• Digitally Controlled Impedance (DCI): When selected, this option internally
terminates the signals from the RLDRAM II read path (Figure 3-30).

• I/O Voltage Option: The I/O voltage level for the memory interface can be set to
either 1.8V or 1.5V (Figure 3-30). The memory device must have the appropriate
voltage level provided on the PCB for correct functionality.

X-Ref Target - Figure 3-27

Figure 3-27: System Clock Selection

X-Ref Target - Figure 3-28

Figure 3-28: Debug Enable Selection

X-Ref Target - Figure 3-29

Figure 3-29: Internal VREF Selection

UG406_c3_26_072009

UG406_c3_27_072009

UG406_c1_86_041610

http://www.xilinx.com

262 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 3: RLDRAM II Memory Interface Solution

X-Ref Target - Figure 3-30

Figure 3-30: DCI Selection and I/O Voltage Option

UG406_c3_29_022610

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 263
UG406 October 19, 2011

Getting Started

Bank Selections

This page allows the selection of banks for the memory interface (Figure 3-31). Banks can
be selected for different classes of memory signals, such as:

• Address and control signals

• Data signals

• System control signals

• System clocks

For customized settings, click Deselect Banks and select the appropriate bank and
memory signals. When selecting banks, read the Description tab for a list of bank selection
and pin allocation rules that must be followed. Click Next to select the default settings and
move to the next page.

X-Ref Target - Figure 3-31

Figure 3-31: Bank Selections Page

UG406_c3_30_052010

http://www.xilinx.com

264 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 3: RLDRAM II Memory Interface Solution

• Address Group Selection: Select the address/control group from one of the white
banks. Only the inner columns are allowed (Figure 3-32).

• Data Selection: After the address group is assigned, the data group must be selected.
The data group is grayed out in banks that are invalid based on the selected address
group while the available banks are outlined with a black box. To complete the data
selection, enough banks must be selected to hold the data and data mask signals
(Figure 3-33).

X-Ref Target - Figure 3-32

Figure 3-32: Address Group Selection

X-Ref Target - Figure 3-33

Figure 3-33: Data Group Selection

UG406_c3_31_052010

UG406_c3_32_052010

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 265
UG406 October 19, 2011

Getting Started

• System Clocks Selection: After the data group is assigned, the system clocks group
must be selected. Select this group from any of the enabled banks (Figure 3-34).

• Master Bank Selection: Two extra pins are required to set up a DCI reference that
provides better signal integrity. Select the master bank from the pull-down menu
(Figure 3-35).

After the banks have been assigned, click Next to view the summary.

X-Ref Target - Figure 3-34

Figure 3-34: System Clocks Group Selection

X-Ref Target - Figure 3-35

Figure 3-35: Master Bank Selection

UG406_c3_34_052010

UG406_c3_35_072009

http://www.xilinx.com

266 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 3: RLDRAM II Memory Interface Solution

Summary

The summary window provides the complete details about the Virtex-6 FPGA memory
core selection, interface parameters, CORE Generator software options, and FPGA options
of the active project (Figure 3-36).
X-Ref Target - Figure 3-36

Figure 3-36: Summary

UG406_C3_36_081109

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 267
UG406 October 19, 2011

Getting Started

Memory Models

The MIG tool can output a chosen vendor’s memory model for simulation purposes. To
access the models in the output sim folder, click the license agreement (Figure 3-37). Read
the license agreement and check the Accept License Agreement box to accept it. If the
license agreement is not agreed to, the memory model is not made available. A memory
model is necessary to simulate the design.

Click Next to move to the PCB Information page.

X-Ref Target - Figure 3-37

Figure 3-37: Memory Models Page

UG406_c3_37_072009

http://www.xilinx.com

268 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 3: RLDRAM II Memory Interface Solution

PCB Information

This page displays the PCB-related information to be considered while designing the
board that uses the MIG tool generated designs (Figure 3-38).

Click Next to move to the Design Notes Information page.

X-Ref Target - Figure 3-38

Figure 3-38: PCB Information Page

UG406_c3_38_052010

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 269
UG406 October 19, 2011

Getting Started

Design Notes

The MIG tool outputs some useful design notes that should be considered before
proceeding (Figure 3-39).

Click Generate to generate the design files. The MIG tool generates three output
directories: docs, example_design, and user_design. See Directory Structure and File
Descriptions, page 270 for more details on the contents of these directories.

X-Ref Target - Figure 3-39

Figure 3-39: Readme Page

UG406_c3_39_052010

http://www.xilinx.com

270 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 3: RLDRAM II Memory Interface Solution

After generating the design, a Readme page is displayed with the CORE Generator
software output descriptions (Figure 3-40).

Click Close to return to the CORE Generator software.

Directory Structure and File Descriptions

Overview

Output Directory Structure

The MIG tool outputs are generated with the folder name <component name>.

Figure 3-41 shows the output directory structure of the selected design from the MIG tool.
In the <component name> directory, three folders are created:

• docs

• example_design

• user_design

X-Ref Target - Figure 3-40

Figure 3-40: Readme Page

UG406_C3_40_081109

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 271
UG406 October 19, 2011

Getting Started

The example_design and user_design directories contain most of the same files.
However, they are provided separately for easy simulation and integration into the user’s
design. The example_design directory provides an example user application that sends
traffic through the core. This example design is used for simulation and contains the
complete synthesizable testbench. The user_design directory provides only those files
needed to integrate the core into the user’s logic and does not include the simulation or
testbench files.

Directory and File Contents

The Virtex-6 device core directories and their associated files are listed in this section.

<component name>/docs

The docs folder contains the PDF documentation.

<component name>/example_design

The example_design folder contains four folders, namely, par, rtl, sim, and synth.

Table 3-1 to Table 3-8 list the contents of these directories along with file descriptions.

<component name>/example_design/par

Table 3-1 lists the files in the example_design/par directory.

X-Ref Target - Figure 3-41

Figure 3-41: MIG Tool Output Directory Structure

UG406_c3_41_072009

Table 3-1: Files in example_design/par Directory

Name Description

bitgen_options.ut This file contains the bitgen options when running the
design through implementation.

create_ise.bat This is a batch file to generate an ISE project for
implementing the design using the GUI.

example_top.ucf This is the UCF generated from the bank selections.

http://www.xilinx.com

272 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 3: RLDRAM II Memory Interface Solution

<component name>/example_design/rtl

Table 3-2 lists the files in the example_design/rtl directory.

ise_flow.bat This is a batch file for running the design through the
implementation tools through the command-line interface.

rem_files.bat This is a batch file used to remove implementation files
when rerunning a design through the tools. This file is
called by ise_flow.bat to ensure that previous
implementation results are discarded.

xst_options.txt This file contains the XST synthesis options when running
the design through implementation.

set_ise_prop.tcl This file is used by create_ise.bat to set the ISE project
options.

Table 3-2: Files in example_design/rtl Directory

Name Description

clk_ibuf.v/vhd This module instantiates the system clock input
buffers.

example_top.v/vhd This top-level module serves as an example for
connecting the user design to the Virtex-6 FPGA
memory interface core.

iodelay_ctrl.v/vhd This module instantiates the IDELAYCTRL
primitive needed for IODELAY use.

phy_d_q_io.v/vhd This is the I/O module for the entire DQ bus for a
single byte lane.

phy_oserdes_io.v/vhd This is the I/O module for a single bit of data
going to the memory.

phy_read_clk_io.v/vhd This is the I/O module for the incoming CQ/CQ#
echo clocks from the memory.

phy_read_data_align.v/vhd This module realigns the incoming data.

phy_read_dcb.v/vhd This module transfers the data from the clk_rd
domain into the clk domain.

phy_read_dly_ctrl.v/vhd This module drives the IODELAY control for each
clock and data I/O based on the control from the
calibration logic.

phy_read_stage1_cal.v/vhd This module contains the logic for stage 1
calibration.

phy_read_stage2_cal.v/vhd This module contains the logic for stage 2
calibration.

phy_read_sync.v/vhd This module synchronizes control signals from
the clk domain to the clk_rd domain.

phy_read_top.v/vhd This is the top-level of the read path.

Table 3-1: Files in example_design/par Directory (Cont’d)

Name Description

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 273
UG406 October 19, 2011

Getting Started

phy_read_vld_gen.v/vhd This module contains the logic to generate the
valid signal for the read data returned on the user
interface.

phy_reset_sync.v/vhd This module synchronizes control signals from
the clk domain to the clk_rd domain.

phy_v6_d_q_io.v/vhd This is the I/O module for a single DQ bit coming
from the memory.

qdr_rld_infrastructure.v/vhd This modules helps in clock generation and
distribution.

qdr_rld_phy_ocb_mon.v/vhd This module contains the logic for aligning two
clock signals for phase detection.

qdr_rld_phy_pd.v/vhd This is the top-level module for the phase
detector.

rld_mc.v/vhd This module implements the memory controller.

rld_phy_iob.v/vhd This module instantiates the modules that use
IOBs.

rld_phy_top.v/vhd This is the top-level module for the physical layer.

rld_phy_write_control_io.v/vhd This module contains the logic for the control
signals going to the memory.

rld_phy_write_data_io.v/vhd This module contains the logic for the data and
byte writes going to the memory.

rld_phy_write_init_sm.v/vhd This module contains the logic for the
initialization state machine.

rld_phy_write_top.v/vhd This is the top-level wrapper for the write path.

rld_tb_addr_gen.v/vhd This module generates the addresses used in the
example testbench for simulation.

rld_tb_top.v/vhd This is the top-level of the synthesizable
testbench.

rld_tb_wr_rd_sm.v/vhd This is the testbench write/read state machine
that issues commands during simulation.

rld_top.v/vhd This is the top-level wrapper for the memory
controller, user interface, and the PHY.

rld_ui_addr.v/vhd This module generate the FIFOs used to buffer
address and commands for the user interface.

rld_ui_top.v/vhd This is the top-level wrapper for the user
interface.

rld_ui_wr.v/vhd This module generate the FIFOs used to buffer
write data for the user interface.

tb_cmp_data.v/vhd This is the comparison module for the data
returning from the PHY in a simulation.

Table 3-2: Files in example_design/rtl Directory (Cont’d)

Name Description

http://www.xilinx.com

274 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 3: RLDRAM II Memory Interface Solution

<component name>/example_design/sim

Table 3-3 lists the files in the example_design/sim directory.

<component name>/example_design/synth

Table 3-4 lists the files in the example_design/synth directory.

<component name>/user_design/par

Table 3-5 lists the files in the user_design/par directory.

tb_cmp_data_bits.v/vhd This is the comparison module for a single bit of
data.

tb_data_gen.v/vhd This module generates the data to use for write
requests in the example testbench.

Table 3-3: Files in example_design/sim Directory

Name Description

glbl.v This file is used for initializing the simulation environment.

sim.do This is the script used for running a ModelSim simulation.

sim_tb_top.v/vhd This is the top-level simulation file.

Table 3-4: Files in example_design/synth Directory

Name Description

example_top.lso This is a library search order file provided for XST.

example_top.prj This is the ISE software project file used for synthesis.

Table 3-5: Files in user_design/par Directory

Name Description

bitgen_options.ut This file contains the bitgen options when running the design
through implementation.

create_ise.bat This is a batch file to generate an ISE project for implementing
the design using the GUI.

<component name>.ucf This is the UCF generated from the bank selections.

ise_flow.bat This is a batch file for running the design through the
implementation tools through the command-line interface.

rem_files.bat This is a batch file used to remove implementation files when
rerunning a design through the tools. This file is called by
ise_flow.bat to ensure that previous implementation
results are discarded.

xst_options.txt This file contains the XST synthesis options when running the
design through implementation.

set_ise_prop.tcl This file is used by create_ise.bat to set the ISE project
options.

Table 3-2: Files in example_design/rtl Directory (Cont’d)

Name Description

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 275
UG406 October 19, 2011

Getting Started

<component name>/user_design/rtl

Table 3-6 lists the files in the user_design/rtl directory.

Table 3-6: Files in user_design/rtl Directory

Name Description

clk_ibuf.v/vhd This module instantiates the system clock input
buffers.

<component name>.v/vhd This top-level module serves as an example for
connecting the user design to the Virtex-6 FPGA
memory interface core.

iodelay_ctrl.v/vhd This module instantiates the IDELAYCTRL
primitive needed for IODELAY use.

phy_d_q_io.v/vhd This is the I/O module for the entire DQ bus for a
single byte lane.

phy_oserdes_io.v/vhd This is the I/O module for a single bit of data
going to the memory.

phy_read_clk_io.v/vhd This is the I/O module for the incoming CQ/CQ#
echo clocks from the memory.

phy_read_data_align.v/vhd This module realigns the incoming data.

phy_read_dcb.v/vhd This module transfers the data from the clk_rd
domain into the clk domain.

phy_read_dly_ctrl.v/vhd This module drives the IODELAY control for each
clock and data I/O based on the control from the
calibration logic.

phy_read_stage1_cal.v/vhd This module contains the logic for stage 1
calibration.

phy_read_stage2_cal.v/vhd This module contains the logic for stage 2
calibration.

phy_read_sync.v/vhd This module synchronizes control signals from the
clk domain to the clk_rd domain.

phy_read_top.v/vhd This is the top-level of the read path.

phy_read_vld_gen.v/vhd This module contains the logic to generate the
valid signal for the read data returned on the user
interface.

phy_reset_sync.v/vhd This module synchronizes control signals from the
clk domain to the clk_rd domain.

phy_v6_d_q_io.v/vhd This is the I/O module for a single DQ bit coming
from the memory.

qdr_rld_infrastructure.v/vhd This modules helps in clock generation and
distribution.

qdr_rld_phy_ocb_mon.v/vhd This module contains the logic for aligning two
clock signals for phase detection.

qdr_rld_phy_pd.v/vhd This is the top-level module for the phase detector.

rld_mc.v/vhd This module implements the memory controller.

http://www.xilinx.com

276 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 3: RLDRAM II Memory Interface Solution

<component name>/user_design/sim

Table 3-7 lists the files in the user_design/sim directory.

rld_phy_iob.v/vhd This module instantiates the modules that use
IOBs.

rld_phy_top.v/vhd This is the top-level module for the PHY.

rld_phy_write_control_io.v/vhd This module contains the logic for the control
signals going to the memory.

rld_phy_write_data_io.v/vhd This module contains the logic for the data and
byte writes going to the memory.

rld_phy_write_init_sm.v/vhd This module contains the logic for the
initialization state machine.

rld_phy_write_top.v/vhd This is the top-level wrapper for the write path.

rld_top.v/vhd This is the top-level wrapper for the memory
controller, user interface, and the PHY.

rld_ui_addr.v/vhd This module generate the FIFOs used to buffer
address and commands for the user interface.

rld_ui_top.v/vhd This is the top-level wrapper for the user interface.

rld_ui_wr.v/vhd This module generate the FIFOs used to buffer
write data for the user interface.

Table 3-7: Files in user_design/sim Directory

Name Description

glbl.v This file is used for initializing the simulation environment.

sim.do This is the script used for running a ModelSim simulation.

sim_tb_top.v/vhd This is the top-level simulation file.

tb_cmp_data.v/vhd This is the comparison module for the data returning from
the PHY in a simulation.

tb_cmp_data_bits.v/vhd This is the comparison module for a single bit of data.

tb_data_gen.v/vhd This module generates the data to use for write requests in
the example testbench.

rld_tb_addr_gen.v/vhd This module generates the addresses used in the example
testbench for simulation.

rld_tb_top.v/vhd This is the top-level of the synthesizable testbench.

rld_tb_wr_rd_sm.v/vhd This is the testbench write/read state machine that issues
commands during simulation.

Table 3-6: Files in user_design/rtl Directory (Cont’d)

Name Description

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 277
UG406 October 19, 2011

Getting Started

<component name>/user_design/synth

Table 3-8 lists the files in the user_design/synth directory.

Verify UCF and Update Design and UCF Rules
Verify UCF and Update Design and UCF verifies the input UCF for bank selection, pin
allocation, and constraint allocation rules, and generates warnings or error reports for any
issue. It does not verify the input .prj file. This feature is useful to verify any UCF pinout
changes after the design is generated from the MIG tool. The user must load the MIG
generated .prj file (the original .prj file) without any modifications. The verification
report is not correct if any of the parameters in the original .prj file are altered. In the
CORE Generator tool, the recustomization option should be selected to reload the project.
The design can be generated only when Verify UCF does not report an error in the
verification report. Warnings can be ignored while generating a design.

These rules are verified from the input UCF:

• If a pin is allocated to more than one signal, the tool reports an error.

• The tool stops further verification if the UCF does not adhere to the uniqueness
property.

• The associative property is verified:

• If the output data clock pair is allocated to a single-region clock-capable (SRCC)
pair, all its associated signals should be allocated in the same bank.

• If the output data clock pair is allocated to an MRCC pin, all its associated signals
should be allocated within the banks above and below.

• Banks should be allocated for the group’s address and data within the vicinity arena.

• An error occurs if a bank is allocated outside the vicinity arena.

• The system clock should be selected either to the GC bank (24, 25, 34, and 35) or to the
bank adjacent to the capture clock bank.

• The system clock bank can be selected adjacent to the capture clock bank only
when the frequency of this controller is not repeated to any other controllers. If
the frequency of this controller is repeated to another controller, the system clock
group must be allocated to any one of the GC banks (24, 25, 34, and 35).

• The signal pairs sys_clk and clk_ref should be allocated to the CC pair or GC pair
pins (for banks adjacent to the capture clock bank) or to the GC pair pins (for GC
banks).

• The memory clock pairs should be allocated to the differential signals.

• In the DCI CASCADE syntax, the selected configuration should require the master
bank.

• The slave banks provided should be valid.

• A valid MMCM constraint value should be provided, otherwise a warning is
generated.

Table 3-8: Files in user_design/synth Directory

Name Description

<component name>.lso This is a library search order file provided for XST.

<component name>.prj This is the ISE software project file used for synthesis.

http://www.xilinx.com

278 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 3: RLDRAM II Memory Interface Solution

If the UCF satisfies the above rules, the updated design can be generated. The design:

• Provides the latest HDL.

• Updates the UCF with the latest clock constraints or any TIGs provided by keeping
the same pinout.

• Generates even the compatible UCFs if the project loaded contains the compatible
FPGA selection.

Error Messages

This section describes the error messages that are generated when verifying the UCF. The
reference UCF must follow the MIG naming conventions (see the UCF generated by the
MIG tool, or names used for the ML605 board).

• Uniqueness: If two or more signals are allocated to the same pins in the reference
UCF, an error message is listed in the directed file with a user-assigned name.

The error message format is “<signalname1> and <signalname2> are allocated to the
same pin.” For example, if rld2_dq[0] and rld2_qk[0] are allocated to the same pin,
such as:

NET "rld2_dq[0]" LOC = "D12";

NET "rld2_qk[0]" LOC = "D12";

Then this error message is displayed:

ERROR: rld2_dq[0] and rld2_qk[0] are allocated to the same pin. Pins
are not unique.

• Association: If the output Data Clock pins are allocated to the SRCC pins, these error
messages are displayed:

ERROR: Pin Names (rld2_qk[0]) and (rld2_dq[32]) should be allocated
in the same bank as the strobe pins are allocated to 'SRCC P' pin.

ERROR: Pin Names (rld2_qk[0]) and (rld2_dq[34]) should be allocated
in the same bank as the strobe pins are allocated to 'SRCC P' pin.

ERROR: Pin Names (rld2_qk[0]) and (rld2_dq[33]) should be allocated
in the same bank as the strobe pins are allocated to 'SRCC P' pin.

ERROR: Pin Names (rld2_qk[0]) and (rld2_dq[35]) should be allocated
in the same bank as the strobe pins are allocated to 'SRCC P' pin.

ERROR: Pin Names (rld2_qk[3]) and (rld2_dq[68]) should be allocated
in the same bank as the strobe pins are allocated to 'SRCC P' pin.

ERROR: Pin Names (rld2_qk[3]) and (rld2_dq[69]) should be allocated
in the same bank as the strobe pins are allocated to 'SRCC P' pin.

ERROR: Pin Names (rld2_qk[3]) and (rld2_dq[65]) should be allocated
in the same bank as the strobe pins are allocated to 'SRCC P' pin.

ERROR: Pin Names (rld2_qk[3]) and (rld2_dq[64]) should be allocated
in the same bank as the strobe pins are allocated to 'SRCC P' pin.

ERROR: Pin Names (rld2_qk[3]) and (rld2_dq[67]) should be allocated
in the same bank as the strobe pins are allocated to 'SRCC P' pin.

ERROR: Pin Names (rld2_qk[3]) and (rld2_dq[66]) should be allocated
in the same bank as the strobe pins are allocated to 'SRCC P' pin.

ERROR: Pin Names (rld2_qk[3]) and (rld2_dq[70]) should be allocated
in the same bank as the strobe pins are allocated to 'SRCC P' pin.

ERROR: Pin Names (rld2_qk[3]) and (rld2_dq[71]) should be allocated
in the same bank as the strobe pins are allocated to 'SRCC P' pin.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 279
UG406 October 19, 2011

Getting Started

• Vicinity Verification: Error messages are displayed when the pins are allocated out of
the vicinity arena.

• If the data write bank selected is out of the vicinity arena, these error messages are
displayed:

ERROR: c0_rld2_dq[0](Data) should not be allocated to bank 42. The
rule is, it can only be moved within the bank(s) "27,37,38"
specified in the input mig.prj file for "Data" group.

ERROR: c0_rld2_dq[1](Data) should not be allocated to bank 42. The
rule is, it can only be moved within the bank(s) "27,37,38"
specified in the input mig.prj file for "Data" group.

ERROR: c0_rld2_dq[2](Data) should not be allocated to bank 42. The
rule is, it can only be moved within the bank(s) "27,37,38"
specified in the input mig.prj file for "Data" group.

ERROR: c0_rld2_dq[3](Data) should not be allocated to bank 42. The
rule is, it can only be moved within the bank(s) "27,37,38"
specified in the input mig.prj file for "Data" group.

ERROR: c0_rld2_dq[4](Data) should not be allocated to bank 42. The
rule is, it can only be moved within the bank(s) "27,37,38"
specified in the input mig.prj file for "Data" group.

ERROR: c0_rld2_dq[5](Data) should not be allocated to bank 42. The
rule is, it can only be moved within the bank(s) "27,37,38"
specified in the input mig.prj file for "Data" group.

ERROR: c0_rld2_dq[6](Data) should not be allocated to bank 42. The
rule is, it can only be moved within the bank(s) "27, 37, 38"
specified in the input mig.prj file for "Data" group.

ERROR: c0_rld2_dq[7](Data) should not be allocated to bank 42. The
rule is, it can only be moved within the bank(s) "27, 37, 38"
specified in the input mig.prj file for "Data" group.

• Differential Pair Verification: If the system clock pins are not allocated to the
differential pairs, these error messages are displayed:

ERROR: "sys_clk_p" Should be allocated to either CC P pin or GC P
pin.

ERROR: "sys_clk_n" Should be allocated to either CC N pin or GC N
pin.

ERROR: "sys_clk_p" and "sys_clk_n" Should be allocated to either CC
or GC P/N pair.

ERROR: "clk_ref_p" Should be allocated to either CC P pin or GC P
pin.

ERROR: "clk_ref_n" Should be allocated to either CC N pin or GC N
pin.

ERROR: "clk_ref_p" and "clk_ref_n" Should be allocated to either CC
or GC P/N pair.

• Absence of Signals: If one or more signal pin pairs is missing and/or commented in
the given UCF against the selected inputs, the verification result indicates the absence
of these signal pin pairs as a warning.

The warning message format is “Signal <signal_name> is expected, but not present in
the UCF.” For example:

WARNING: Signal "rld2_dq[15]" expected, but not present in the UCF.

WARNING: Signal "rld2_dq[16]" expected, but not present in the UCF.

WARNING: Signal "rld2_dq[17]" expected, but not present in the UCF.

http://www.xilinx.com

280 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 3: RLDRAM II Memory Interface Solution

• Master Bank Verification: This verifies whether the provided master bank is valid for
the selected DCI banks in the column. This error message is displayed when the valid
master bank is not provided for the column:

ERROR: the master bank "23" provided is not valid master bank.
Following are the valid master bank "24, 25" for the column "1".

Quick Start Example Design
After the core is successfully generated, the example design HDL can be processed
through the Xilinx Implementation toolset. The MIG tool provides a simple synthesizable
testbench to generate traffic to test the core. An architectural overview of the testbench is
shown in Figure 3-42, page 280. The top level of the testbench (sim_tb_top) is located in
<project_dir>/sim and contains the memory model to simulate against the top level of
the example design (ip_top). The ip_top folder contains the infrastructure module, the
IODELAY controller, and the simple testbench. The infrastructure module generates all the
clocking signals needed by the core. In tb_top are the modules used to generate
commands, data, and addresses, as well as a comparator module that checks the responses
to verify whether or not the correct data was returned.

Simulating the Example Design

The Xilinx® UNISIM library must be mapped into the simulator. The testbench provided
with the example design supports these pre-implementation simulations:

• The testbench along with vendor’s memory model used in the example design

• The RTL files of the MC and the PHY core, created by the MIG tool

The simulation can be run from this directory:

<project_dir>/<component_name>/sim

ModelSim is the only supported simulation tool. The simple testbench can be run using
ModelSim by executing the sim.do script.

X-Ref Target - Figure 3-42

Figure 3-42: Top Level of Testbench

UG406_c3_42_072109

rld_top

ip_top
sim_tb_top

RLDRAM II
Memory Model

tb_top

infrastructure

IODELAYCTRL

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 281
UG406 October 19, 2011

Designing with the Core

Implementing the Example Design

The xst.bat script file runs the design through synthesis, translate, map, and par. This
script file sets all the required options and should be referred to for the recommended
build options for the design.

Designing with the Core
The core is bundled with an example design that can be simulated. The example design can
be used as a starting point for the user design or as a reference for debugging purposes.
Only supported modifications should be made to the configuration of the core. See
Customizing the Core, page 298 for supported configuration parameters.

http://www.xilinx.com

282 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 3: RLDRAM II Memory Interface Solution

Core Architecture
This section describes the design implementation of the PHY.

Overview
Figure 3-43 is a high-level block diagram of the Virtex-6 FPGA RLDRAM II memory
interface solution. This figure shows both the internal FPGA connections to the client
interface for initiating read and write commands, and the external interface to the memory
device.
X-Ref Target - Figure 3-43

Figure 3-43: High-Level Block Diagram of the Memory Interface Solution

RLDRAM II
Device

Physical
Interface

Client
Interface

Virtex-6 FPGA

clk

sys_rst_n

rst_clk

clk_ref

clk_mem

mmcm_locked

iodelay_ctrl_rdy

user_rd_cmd0/1

UG406_c3_43_081511

user_addr0/1

user_ba0/1

user_wr_en

rld_ck_p

rld_ck_n

rld_dk_p

rld_dk_n

rld_cs_n

rld_we_n

rld_ref_n

rld_a

rld_ba

rld_dq

rld_dm

rld_qk_p

rld_qk_nuser_wr_data0/1

user_wr_dm0/1

user_afifo_empty

user_afifo_full

user_wdfifo_empty

user_wdfifo_full

user_rld_valid0/1

user_rd_data0/1

user_cal_done

CK

CK#

DK

DK#

CS#

WE#

REF#

A

BA

DQ

DM

QK

QK#

user_cmd_en0/1

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 283
UG406 October 19, 2011

Core Architecture

The core is composed of these elements, as shown in Figure 3-44:

• Client interface

• Memory controller

• Physical interface

• Read path

• Write path

The client interface (also known as the user interface) uses a simple protocol based entirely
on SDR signals to make read and write requests. Refer to Client Interface, page 284 for
more details describing this protocol.

X-Ref Target - Figure 3-44

Figure 3-44: Components of the RLDRAM II Memory Interface Solution

Physical InterfaceClient Interface

User Design

ip_top

rld_top

clk

sys_rst_n

rst_clk

CLK200

rst_clk200

clk_mem

mmcm_locked

iodelay_ctrl_rdy

user_rd_cmd0/1

UG406_c3_44_081511

RLDRAM II
Memory
Device

user_addr0/1

user_ba0/1

user_wr_en

rld_ck_p

rld_ck_n

rld_dk_p

rld_dk_n

rld_cs_n

rld_we_n

rld_ref_n

rld_a

rld_ba

rld_dm

rld_dq

rld_qk_p

rld_qk_n

user_wr_data0/1

user_wr_dm0/1

user_afifo_empty

user_afifo_full

user_wdfifo_empty

user_wdfifo_full

user_rld_valid0/1

user_rd_data0/1

user_cal_done

Reset
Module

Clock
Generation

Memory ControllerUser Interface

phy_top

Write Path

Read Path

user_cmd_en0/1

http://www.xilinx.com

284 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 3: RLDRAM II Memory Interface Solution

The memory controller takes commands from the user interface and adheres to the
protocol requirements of the RLDRAM II memory device. Refer to Memory Controller,
page 292 for more details.

The physical interface generates the proper timing relationships and DDR signaling to
communicate with the external memory device, while conforming to the RLDRAM II
protocol and timing requirements. Refer to Physical Interface, page 288 for more details.

Within the PHY, logic is broken up into read and write paths. The write path generates the
RLDRAM II signaling for generating read and write requests. This includes clocking,
control signals, address, data, and data mask signals. The read path is responsible for
calibration and providing read responses back to the user with a corresponding valid
signal. Refer to Calibration, page 296 for more details describing this process.

Client Interface
The client interface connects the Virtex-6 FPGA user design to the RLDRAM II memory
solutions core to simplify interactions between the user and the external memory device.

Command Request Signals

The client interface provides a set of signals used to issue a read or write command to the
memory device. These signals are summarized in Table 3-9 and are listed assuming
four-word or eight-word burst architectures. When using a burst length of two, some
additional signals are required, as listed in Table 3-10, page 286. Although the top level
contains debug signals, these are left out of Table 3-9 and are described further in
Debugging Virtex-6 FPGA RLDRAM II Memory Designs, page 304.

Table 3-9: Client Interface Request Signals

Signal Direction Description

user_cmd_en0 Input Command Enable. This signal issues a
read or write request and indicates that
the corresponding command signals are
valid.

user_rd_cmd0 Input Read Command. This signal issues a read
request. When user_cmd_en0 is asserted,
this signal is active High for a read
command and active Low for a write
command.

user_addr0[ADDR_WIDTH – 1:0] Input Command Address. This is the address
to use for a command request. It is valid
when user_cmd_en is asserted.

user_ba0[BANK_WIDTH – 1:0] Input Command Bank Address. This is the
address to use for a write request. It is
valid when user_cmd_en is asserted.

user_wr_en Input Write Data Enable. This signal issues the
write data and data mask. It indicates that
the corresponding user_wr_* signals are
valid.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 285
UG406 October 19, 2011

Core Architecture

user_wr_data0[DATA_WIDTH – 1:0] Input Write Data 0. This is the data to use for a
write request and is composed of the rise
and fall data concatenated together. It is
valid when user_wr_en is asserted.

user_wr_data1[DATA_WIDTH – 1:0] Input Write Data 1. This is the data to use for a
write request and is composed of the rise
and fall data concatenated together. It is
valid when user_wr_en is asserted.

user_wr_dm0[NUM_DEVICES – 1:0] Input Write Data Mask 0. When active High,
the write data for a given selected device
is masked and not written to the memory.
It is valid when user_wr_en is asserted.

user_wr_dm1[NUM_DEVICES – 1:0] Input Write Data Mask 0. When active High,
the write data for a given selected device
is masked and not written to the memory.
It is valid when user_wr_en is asserted.

user_afifo_empty Output Address FIFO empty. If asserted, the
command buffer is empty.

user_wdfifo_empty Output Write Data FIFO empty. If asserted, the
write data buffer is empty.

user_afifo_full Output Address FIFO empty. If asserted, the
command buffer is full, and any writes to
the FIFO are ignored until deasserted.

user_wdfifo_full Output Write Data FIFO empty. If asserted, the
write data buffer is full, and any writes to
the FIFO are ignored until deasserted.

user_rd_valid0 Output Read Valid 0. This signal indicates that
data read back from memory is available
on user_rd_data0 and should be
sampled.

user_rd_valid1 Output Read Valid 1. This signal indicates that
data read back from memory is available
on user_rd_data1 and should be
sampled.

user_rd_data0[DATA_WIDTH – 1:0] Output Read Data 0. This is the data read back
from the read command.

user_rd_data1[DATA_WIDTH – 1:0] Output Read Data 1. This is the data read back
from the read command.

user_cal_done Output Calibration Done. This signal indicates
back to the user design that read
calibration is complete and requests can
now take place.

Table 3-9: Client Interface Request Signals (Cont’d)

Signal Direction Description

http://www.xilinx.com

286 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 3: RLDRAM II Memory Interface Solution

Interfacing with the Core through the Client Interface

The client interface protocol is shown in Figure 3-45 for the four-word burst architecture.

Before any requests can be accepted, the rst_clk signal must be deasserted Low. After the
rst_clk signal is deasserted, the user interface FIFOs can accept commands and data for
storage. The user_cal_done signal is asserted after the memory initialization procedure
and PHY calibration are complete, and the core can begin to service client requests.

A command request is issued by asserting user_cmd_en0 as a single cycle pulse. At this
time, the user_rd_cmd0, user_addr0, and user_ba0 signals must be valid. To issue a read
request, user_rd_cmd0 is asserted active High, while for a write request, user_rd_cmd0 is
kept Low. For a write request, the data is to be issued in the same cycle as the command by
asserting the user_wr_en signal High and presenting valid data on user_wr_data0,
user_wr_data1, user_wr_dm0, and user_wr_dm1. For an eight-word burst architecture, an
extra cycle of data is required for a given write command, as shown in Figure 3-46. Any
gaps in the command flow required can be filled with read commands, if desired.

Table 3-10: Additional Client Interface Request Signals used for BL2

Signal Direction Description

user_cmd_en1 Input Reserved for future use. Tie Low.

user_rd_cmd1 Input Reserved for future use. Tie Low.

user_addr1[ADDR_WIDTH – 1:0] Input Reserved for future use. Tie Low.

user_ba1[BANK_WIDTH – 1:0] Input Reserved for future use. Tie Low.

X-Ref Target - Figure 3-45

Figure 3-45: Client Interface Protocol (Four-Word Burst Architecture)

user_cmd_en0

user_rd_cmd0

user_addr0

user_ba0

user_wr_en

user_wr_data0

user_wr_data1

user_wr_dm0

user_wr_dm1

CLK

UG406_c3_45_072209

Write Write Read Write

A0 A1 A2 A3

BA0 BA1 BA2 BA3

{rise0, fall0} {rise2, fall2} {rise4, fall4}

{rise1, fall1} {rise3, fall3} {rise5, fall5}

{rise0, fall0} {rise2, fall2} {rise4, fall4}

{rise1, fall1} {rise3, fall3} {rise5, fall5}

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 287
UG406 October 19, 2011

Core Architecture

When a read command is issued some time later (based on the configuration and latency of
the system), the user_rd_vld0 signal is asserted, indicating that user_rd_data0 is now
valid, while user_rd_vld1 is asserted indicating that user_rd_data1 is valid, as shown in
Figure 3-47. The read data should be sampled on the same cycle that user_rd_vld0 and
user_rd_vld1 are asserted because the core does not buffer returning data. This
functionality can be added in by the user, if desired.

Core Clocking and Reset Requirements

The PHY requires several clocks to function properly. These clocks are described in
Table 3-11. As part of calibration, the reset signals used by the core must be tightly
controlled, and it is highly recommended that these signals are not altered. To control these
signals, a reset module exists within the PHY that synchronizes all reset signals and
provides them back through the client interface for use. These signals are also listed in
Table 3-11.

X-Ref Target - Figure 3-46

Figure 3-46: Client Interface Protocol (Eight-Word Burst Architecture)

BA0 BA1 BA2 BA3

user_cmd_en0

user_rd_cmd0

user_addr0

user_ba0

user_wr_en

user_wr_data0

user_wr_data1

user_wr_dm0

user_wr_dm1

CLK

UG406_c3_46_072209

1st Write Read 2nd Write 3rd Write

A0 A1 A2 A3

{rise0, fall0} {rise2, fall2} {rise4, fall4} {rise6, fall6} {rise8, fall8} {rise10, fall10}

{rise1, fall1} {rise3, fall3} {rise5, fall5} {rise7, fall7} {rise9, fall9} {rise11, fall11}

{rise0, fall0} {rise2, fall2} {rise4, fall4} {rise6, fall6} {rise8, fall8} {rise10, fall10}

{rise1, fall1} {rise3, fall3} {rise5, fall5} {rise7, fall7} {rise9, fall9} {rise11, fall11}

Data for
3rd Write

Data for
2nd Write

Data for
1st Write

X-Ref Target - Figure 3-47

Figure 3-47: Client Interface Protocol Read Data

user_rd_valid0

user_rd_data0

user_rd_data1

CLK

UG406_c3_47_081009

user_rd_valid1

{rise 0, fall0} {rise2, fall2} {rise4, fall4} {rise6, fall6}

{rise1, fall1} {rise3, fall3} {rise5, fall5} {rise7, fall7}

http://www.xilinx.com

288 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 3: RLDRAM II Memory Interface Solution

Physical Interface
The physical interface is the connection from the FPGA memory interface solution to an
external RLDRAM II device. The I/O signals for this interface are shown in Table 3-12.
These signals can be directly connected to the corresponding signals on the RLDRAM II
device.

Table 3-11: Client Interface Clocking and Reset Signals

Signal Direction Description

clk Input Divided Clock. This clock is half the frequency of the
memory clock and used as the main system clock.

sys_rst Input System Reset. This is the asynchronous reset to be
synchronized in the reset module within the PHY. This
signal must be held for at least 3 clk cycles.

rst_clk Output Divided Clock Reset. This is the synchronized reset
provided from the PHY back to the user’s client
interface.

clk_ref Input Reference Clock. This is the reference clock used for
the IODELAY controller. Allowable speeds are
200 MHz (-1, -2, and -3 devices) or 300 MHz (-2 and -3
devices only).

clk_mem Input Full Frequency Memory Clock. This is a
full-frequency clock provided from the MMCM and
should only be used as an input to the OSERDES.

mmcm_locked Input MMCM Locked. This signal indicates that the MMCM
is locked.

iodelay_ctrl_rdy Input IODELAY Controller Ready. This signal from the
IODELAY controller indicates that the IODELAYs are
ready to be used. The PHY is held in reset until the
controller is ready.

Table 3-12: Physical Interface Signals

Signal Direction Description

rld_ck_p Output System Clock CK. This is the address/command clock
to the memory device.

rld_ck_n Output System Clock CK#. This is the inverted system clock to
the memory device.

rld_dk_p Output Write Clock DK. This is the write clock to the memory
device.

rld_dk_n Output Write Clock DK#. This is the inverted write clock to the
memory device.

rld_a Output Address. This is the address supplied for memory
operations.

rld_ba Output Bank Address. This is the bank address supplied for
memory operations.

rld_cs_n Output Chip Select CS#. This is the active-Low chip select
control signal for the memory.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 289
UG406 October 19, 2011

Core Architecture

PHY-Only Interface
The PHY-only interface is described here to facilitate designing a controller to interface
with the PHY. The client interface signals described in Table 3-11, page 288 and the
physical interface signals described in Table 3-12, page 288 are still required for the PHY-
only interface.

When using a custom controller, care must be taken to abide by the memory specifications.
Because the PHY is clocked at half the memory clock frequency, two commands must be
issued per clock cycle. In a half-frequency design, internal FPGA logic timing is easier to
meet, but more signals are required for a given internal clock cycle. This is because for each
internal clock cycle, there are two fast clock cycles for the memory interface. The PHY takes
the two commands and sends them to the memory in the order received, where the signal
names ending in 0 go out first before the signal names ending in 1. The 0 signals comprise
the command and data for the first fast clock cycle, while the 1 signals comprise the
command and data for the second fast clock cycle. Before cal_done is asserted, the PHY
controls the command, address, and data bus of the memory. The input signals listed in
Table 3-13 must be valid after cal_done is asserted from the PHY, because control over the
memory interface is transferred to the controller, and the input signals listed in Table 3-13
are used to send out commands and data over the memory interface.

rld_we_n Output Write Enable WE#. This is the active-Low write enable
control signal for the memory.

rld_cs_n Output Refresh REF#. This is the active-Low refresh control
signal for the memory.

rld_dq Input/Output Data DQ. This is a bidirectional data port, driven by
the FPGA for writes and by the memory for reads.

rld_qk_p Input Read Clock QK. This is the read clock returned from
the memory edge aligned with read data on rld_dq.
This clock (in conjunction with QK#) is used by the
PHY to sample the read data on rld_dq.

rdd_qk_n Input Read Clock QK#. This is the inverted read clock
returned from the memory. This clock (in conjunction
with QK) is used by the PHY to sample the read data
on rld_dq.

Table 3-12: Physical Interface Signals (Cont’d)

Signal Direction Description

Table 3-13: PHY-Only Interface Signals

Signal Direction Description

cs0[NUM_DEVICES – 1:0] Input Memory Chip Select 0. This signal is active
High, and one exists per device. This is the
first chip select sent out.

cs1[NUM_DEVICES – 1:0] Input Memory Chip Select 1. This signal is active
High, and one exists per device. This is the
second chip select sent out after cs0.

we0 Input Memory Write Enable 0. This active-High
signal is the first write enable sent out.

http://www.xilinx.com

290 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 3: RLDRAM II Memory Interface Solution

we1 Input Memory Write Enable 1. This active-High
signal is the second write enable sent out
after we0.

ref0 Input Memory Refresh 0. This active-High signal
is the first refresh sent out.

ref1 Input Memory Refresh 1. This active-High signal
is the second refresh sent out after ref0.

addr0[ADDR_WIDTH – 1:0] Input Memory Address 0. This is the first address
and is associated with cs0, we0, and ref0.

addr1[ADDR_WIDTH – 1:0] Input Memory Address 1. This is the second
address and is associated with cs1, we1, and
ref1.

ba0[BANK_WIDTH – 1:0] Input Memory Bank Address 0. This is the first
bank address and is associated with cs0,
we0, and ref0.

ba1[BANK_WIDTH – 1:0] Input Memory Bank Address 1. This is the second
bank address and is associated with cs1,
we1, and ref1.

wr_en0 Input Write Enable 0. This signal is necessary to
control the 3-state OSERDES inputs for
bidirectional interfaces.

wr_en1 Input Write Enable 1. This signal is necessary to
control the 3-state OSERDES inputs for
bidirectional interfaces.

wr_data0[DATA_WIDTH × 2 – 1:0] Input Write Data 0. This is the data to use for a
write request. It is composed of the rise and
fall data concatenated together.

wr_data1[DATA_WIDTH × 2 – 1:0] Input Write Data 1. This is the data to use for a
write request. It is composed of the rise and
fall data concatenated together.

wr_dm0[NUM_DEVICES × 2 – 1:0] Input Write Data Mask 0. When active High, the
write data for a given selected device is
masked and not written to the memory.

wr_dm1[NUM_DEVICES × 2 – 1:0] Input Write Data Mask 1. When active High, the
write data for a given selected device is
masked and not written to the memory.

cal_done Output Calibration Done. This signal indicates
back to the controller that read calibration is
complete and hands over control to the
controller.

Table 3-13: PHY-Only Interface Signals (Cont’d)

Signal Direction Description

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 291
UG406 October 19, 2011

Core Architecture

Figure 3-48 shows the timing diagram for a typical configuration 3, burst length of four
with commands being sent to the PHY from a controller. After cal_done is asserted, the
controller begins issuing commands. A single write command is issued by asserting the cs0
and we0 signals (with ref0 being held Low) and ensuring that addr0 and ba0 are valid.
Because this is a burst length of four configuration, the second command that must be
issued is a No Operation (NOP), that is, all the control signals (cs1, we1, ref1) are held Low.
Two clock cycles later, the wr_en0/1 signals are asserted, and the wr_data0/1 and
wr_dm0/1 signals are valid for the given write command. In this same clock cycle, a single
read command is issued by asserting cs0 (with we0 and ref0 being held Low) and placing
the associated addresses on addr0 and ba0. Two refresh commands are issued by asserting
cs0/1, ref0/1, and ba0/1. The refresh commands can be issued in the same clock cycle as
long as the memory banking rules are met.

The controller sends the wr_en0/1 signals and data at the necessary time based on the
configuration setting. This time changes depending on the configuration. Table 3-14 details
when the wr_en0/1 signals should be asserted with the data valid for a given
configuration. If Address Multiplexing is used, the PHY handles rearranging the address
signals and outputting the address over two clock cycles rather than one.

X-Ref Target - Figure 3-48

Figure 3-48: PHY-Only Interface for Burst Length 4, Configuration 3, and Address Multiplexing OFF

cs0

cs1

ref0

ref1

A0 A1addr0

we0

we1

CLK

UG406_c3_48_081009

addr1

BA0 BA1

4 Clocks

4 Clocks

BA2

BA3

ba0

ba1

wr_en0

Write
Command

Read
Command

Refresh
Command

wr_en1

wd0wr_data0

wd1wr_data1

wr_dm0 w_dm0

wr_dm1

cal_done

w_dm1

Switch the bus

http://www.xilinx.com

292 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 3: RLDRAM II Memory Interface Solution

For CIO memory interfaces, the wr_en0/1 signals are required to be asserted an extra clock
cycle before the first wr_en0/1 signal is asserted, and held for an extra clock cycle after
deassertion. This is required to ensure that the shared bus has time to change from read to
write and from write to read. The physical layer has a requirement of two clock cycles of no
operation (NOP) when transitioned from a write to a read, and from a read to a write. This
two clock cycle requirement is dependent on the PCB and might need to be increased for
different board layouts.

Memory Controller

The memory controller is designed to enforce the RLDRAM II memory access
requirements and interface with the PHY. The controller processes commands in order, so
the order of commands presented to the controller is the order in which they are presented
to the memory device.

The memory controller first receives commands from the user interface and determines if
the command can be processed right away or needs to wait. When all requirements are
met, the command is placed on the PHY interface. For a write command, the controller
generates a signal for the user interface to provide the write data to the PHY. This signal is
generated based on the memory configuration to ensure the proper command-to-data
relationship. Auto-refresh commands are inserted into the command flow by the controller
to meet the memory device refresh requirements.

For CIO devices, the data bus is shared for read and write data. Switching from read
commands to write commands and vice versa introduces gaps in the command stream due
to switching the bus. For better throughput, changes in the command bus should be
minimized when possible.

Write Path

The write path to the RLDRAM II memory includes the address, data, and control signals
necessary to execute any memory operation. The control strobes rld_cs_n, rld_we_n, and
rld_ref_n, and addresses rld_a and rld_ba to the memory all use SDR formatting. The write
data values rld_dq and rld_dm also utilize DDR formatting to achieve the required
two-word, four-word, or eight-word burst within the given clock periods. Figure 3-49,
page 293 shows a high-level block diagram of the write path and its submodules.

Table 3-14: Command to Write Enable Timing

Address
Multiplexing

Configuration
Command to Write Enable

(Clock Cycles)

ON 1 3

2 4

3 5

OFF 1 2

2 3

3 4(1)

Notes:
1. Shown in Figure 3-48.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 293
UG406 October 19, 2011

Core Architecture

I/O Architecture

The RLDRAM II memory interface solution uses the OSERDES primitive found in the
Virtex-6 FPGA I/O blocks for clocking all outputs of the PHY to the memory device.
Built-in Virtex-6 FPGA OSERDES functions simplify the task of generating the proper

X-Ref Target - Figure 3-49

Figure 3-49: Write Path

UG406_c3_49_081210

From User
Interface

ODELAY

IOB

rld_ck_p OBUFDS

rld_ck_n

CLOCK
GENERATION

ADDRESS/
CONTROL

GENERATION

wr_data 0/wr_data 1

DATA/DATA
MASK

INITIALIZATION
STATE MACHINE

From Controller

wr_en 0/wr_en 1

wr_dm 0/wr_dm 1

From Controller

we0/we1

cs0/cs1

ref0/ref1

addr0/addr1

From MMCM

clk_mem

clk

ba0/ba1

cal_stage1_start

Interface To
Read Path

int_done

To Read Path
int_rd_cmd_n

cal_stage2_start

CLKDIVQ

OSERDES D
CLK

rld_dk_n

ODELAY

IOB

rld_a OBUF

CLKDIVQ

OSERDES D
CLK

ODELAY

IOB

rld_ba OBUF

CLKDIVQ

OSERDES D
CLK

ODELAY

IOB

rld_cs_n OBUF

CLKDIVQ

OSERDES D
CLK

ODELAY

IOB

rld_we_n OBUF

CLKDIVQ

OSERDES D
CLK

ODELAY

IOB

rld_dm OBUF

CLKDIVQ

OSERDES D
CLK

IODELAY

IOB

rld_dq IOBUF

CLKDIV
Q

TQ

OSERDES D
T

CLK

ODELAY

IOB

rld_dk_p OBUFDS

CLKDIVQ

OSERDES D

ODELAY

IOB

rld_ref_n OBUF

Q

OSERDES
CLK

CLK

CLKDIV

D

http://www.xilinx.com

294 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 3: RLDRAM II Memory Interface Solution

clock, address, data, and control signaling for communication with the memory device.
The flow through the OSERDES uses two different input clocks to achieve maximum
performance. Data input ports D1/D2 or D3/D4 are clocked in using the clock provided
on the CLKDIV input port (clk in this case), and passed through a parallel-to-serial
conversion block.

Figure 3-50 shows a high-level block diagram of the OSERDES flow. The OSERDES is used
to clock all outputs from the PHY to the memory device.

After exiting the OSERDES, the data needs to be optionally realigned. All the output
signals must be presented center aligned with respect to the generated clocks CK/CK#. For
this reason, the IODELAY blocks within the I/O blocks are also used in conjunction with
the OSERDES to shift the controls and clocks into alignment. The shift is placed on the
control and clocks rather than the data to minimize the jitter on the datapath.

In addition to generating the output signals to the memory, the write path also assists the
read path with calibration. This logic performs reads and writes based on signals provided
from the read path indicating which stage of calibration it is in. The state machine begins
by asserting the init_done signal indicating that calibration can begin. This signal is
asserted only after the OSERDES block is ready to accept data and the RLDRAM II
initialization sequence is complete. Stage one calibration is ready to begin when
cal_stage1_start is asserted. During this stage, the pattern 0x00FF_0F0F is written to the
memory device and read back continuously until signaled to begin stage two. During the
first stage, QK and QK# are calibrated along with data DQ. Stage two calibration requires
one write of the pattern 0xAAAA followed by one read used to calibrate the valid signal for
read responses.

Read Path
The QK-based data capture scheme enables capture of read data from the memory at very
high clock rates. The read path captures the returning data and provides a valid strobe
back to the user indicating that the return data is on the client interface. Before any read can
take place, calibration must occur. Calibration is the main function of the read path and
occurs once on reset followed by continuous dynamic calibration. For every bit in the
memory, calibration is done against both QK and QK#. After the initial settings are in
place, dynamic calibration takes over to account for any voltage and temperature changes
that might affect the system’s once-ideal settings.

X-Ref Target - Figure 3-50

Figure 3-50: OSERDES Flow

UG406_c3_50_031510

Parallel-to-Serial
Conversion Block

Virtex-6 FPGA
OSERDES

D1

OQ

D2

D3

D4

CLK

CLKDIV
CLK

clk_mem

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 295
UG406 October 19, 2011

Core Architecture

Data Capture

Figure 3-51, page 295 shows a high-level block diagram of the path that data takes from
entering the FPGA until given to the user. To capture the data, the read path utilizes an
IODELAY and ISERDES that exist in every I/O block on the Virtex-6 device. The IODELAY
is used to shift the clocks or data entering the FPGA to adjust its alignment relative to other
signals. Following this shift, data then passes through the ISERDES. After the data is
retrieved, it enters a data alignment module and optionally realigns as seen in Figure 3-51,
page 295. More details about this alignment are provided in Calibration, page 296. Data is
transferred from the clk_rd domain to the clk domain through a circular buffer built using
distributed RAM. In the clk domain, the valid signal is generated and provided with data
back to the user.

X-Ref Target - Figure 3-51

Figure 3-51: Read Capture

UG406_c3_51_081009

IODELAY

QK/QK# IOB
1/2

QK

QK#

IBUF_DS
clk_cq

clk_rd

rd_data0

Phase

CLK_RD Domain CLK Domain

CLK_RD Domain CLK Domain

BUFIO

BUFR

clkdiv

D

ISERDES
(Networking

Mode)

IODELAY DATA
ALIGN

From Stage
1 Calibration

Data IOB

DQ0

Q1–Q4

clk

clkb

IOBUF

DATA
CIRCULAR

BUFFER

VALID
GENERATOR

rd_data1

clkdiv

D

ISERDES
(Networking

Mode)

IODELAY

Data IOB

DQ1

Q1–Q4

clk

clkb

IOBUF

WRITE READ

To User

rd_valid0

CLK

rd_valid1

To User

From CLK
BUFG

int_rd_cmd_n

From
Write Path

http://www.xilinx.com

296 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 3: RLDRAM II Memory Interface Solution

Calibration
The calibration logic consists of a one-time initial calibration followed by continuous
real-time calibration. This logic provides the requested amount of delay on read data (DQ)
and the read clocks (QK/QK#) to align the clock in the data valid window. This is done
using the IODELAY elements within the I/O block of the Virtex-6 FPGA. The IODELAY
elements delay the input in increments of 75 ps, up to a maximum delay of 2.4 ns when
using a reference clock frequency of 200 MHz. For a reference clock frequency of 300 MHz
(in -3 devices only), the delay increment is 52 ps for a maximum delay of 1.6 ns. An
IODELAYCTRL module is needed in conjunction with the IODELAYs to maintain the
resolution of the IODELAY elements.

Calibration begins after the RLDRAM II initialization sequence is complete. Prior to this
point, all read path logic is held in reset. Calibration is performed in two stages:

1. Calibration of QK with respect to DQ followed by data realignment

2. Resolving latency and valid generation

Calibration of QK, QK# and DQ, and Data Realignment

When the data is returned from memory, it is initially edge aligned to the clocks QK and
QK#. To safely capture the data, a sample must be taken from the center of the data. Center
aligning QK and QK# to DQ provides the most possible margin for a successful capture. To
assist this stage of calibration by ensuring that the calibration logic has predefined data to
calibrate against, the write path performs an initial write of 0x0FF0_0F0F to an address
location in each memory bank followed by continuous reads from these locations.

During calibration, delay adjustments are made by delaying the clock or data through the
use of IODELAYs. The basic flow through this stage of calibration is:

1. Find the best tap setting to center align QK/QK# and DQ[0]’s rising and falling edge
data for each memory.

2. Perform a fine phase alignment of the ISERDES outputs and find the best tap setting
for QK/QK# and DQ[0].

3. Determine which phase alignment of the ISERDES output provides the best results
(the best result is determined by which polarity delays the data the least and which is
most accurately found in the center of DQ).

4. Set the selected fine phase alignment.

5. Each subsequent bit is now calibrated to remove any skew differences relative to
DQ[0].

6. This process repeats for each memory device on the interface.

Resolving Latency and Valid Generation

This phase of calibration serves several purposes:

• Sets the latency for fixed-latency mode

• Matches the latency for each memory when wider memories are derived from small
memories

• Sends the determined latency to the valid generation logic.

This stage is required to generate the valid signal associated with the data on the client
interface. During this stage of calibration, a write pattern of 0xAAAA is written to memory
and read back. Doing this allows the read logic to count the number cycles before the
expected data returns. The basic flow through this phase is:

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 297
UG406 October 19, 2011

Core Architecture

1. Count cycles until the read data arrives for each memory device.

2. Determine what value to use as the fixed latency. This value can be either the set value
indicated by the user from the PHY_LATENCY parameter, or the maximum latency
across all memory devices.

3. Calibrate the generation of the read valid signal. Using the value determined in step 2,
delay the read valid signal to align with the read data for the user.

4. Assert cal_done.

Dynamic Calibration

After calibration is complete, an ideal tap setting is found to center align clocks QK/QK# to
the data. However, due to changes in voltage or temperature, this relationship might shift
over time and no longer be ideal. To compensate for this, real-time calibration is needed to
add taps to QK/QK# when necessary.

Reset Module
The reset module synchronizes all the reset signals across all clock domains. This includes
the resets from the client interface for the IODELAYCTRL reference clock, the system reset,
write path reset, and the read path reset. This logic is contained within the PHY because
strict timing must be met on the read path reset with respect to the system reset due to the
synchronization logic between these two domains. In addition, the read path must remain
in reset until the echo clocks QK/QK# are stable from the memory.

The system reset is provided asynchronously to the reset module and gated with the
appropriate signals to use for synchronization across four different clock domains. All
reset signals used by the PHY are asynchronously asserted and synchronously deasserted.
Figure 3-52, page 298 shows the reset scheme used within this module.

http://www.xilinx.com

298 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 3: RLDRAM II Memory Interface Solution

IDELAYCTRL

An IDELAYCTRL is required in any bank that uses IODELAYs. IODELAYs are associated
with the data group and address/control group. Any bank/clock region where these
signals are used requires an IDELAYCTRL.

The MIG tool instantiates one IODELAYCTRL and then uses the IODELAY_GROUP
attribute (see the iodelay_ctrl.v/.vhd module). Based on this attribute, the ISE
software properly replicates IODELAYCTRLs as needed within the design.

Customizing the Core
The Virtex-6 FPGA RLDRAM II memory interface solution is customizable to support
several configurations. The specific configuration is defined by Verilog parameters in the
top level of the core, as shown in Table 3-15.

X-Ref Target - Figure 3-52

Figure 3-52: Reset Synchronization

UG406_c3_52_081009

0 1 n

0

clk

rst_wr_clk

~mmcm_locked

~iodelay_ctrl_rdy

sys_reset

0 1 n

0

clk

rst_clk

sys_reset

0 1 n

0

clk_rd

rst_clk_rd

sys_reset

Table 3-15: RLDRAM II Memory Solution Configurable Parameters

Parameter Value Description

ADDR_WIDTH 19–22 This is the memory address bus width.

BANK_WIDTH 3 This is the memory bank address bus
width.

DATA_WIDTH 9, 18, 36, 72 This is the memory data bus width.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 299
UG406 October 19, 2011

Customizing the Core

QK_WIDTH 2 per x18/x36 device

1 per x9 device

This is the memory read clock bus
width.

DK_WIDTH 2 per x36 device

1 per x9/x18 device

This is the memory write clock bus
width.

NUM_DEVICES 1+ This is the number of memory devices.

BURST_LEN 4, 8 This is the memory data burst length.

CLK_PERIOD(1) 3752–11428 This is the FPGA fabric clock period
(ps).

REFCLK_FREQ 200.0, 300.0 This is the reference clock frequency
for IODELAYCTRLs. This value can be
set to 200.0 for any speed grade device
or 300.0 for a -2 or -3 device. For more
information, refer to the IODELAYE1
Attribute Summary table in the
Virtex-6 FPGA SelectIO Resources User
Guide [Ref 4].

FIXED_LATENCY_MODE(2) 0, 1 This parameter indicates whether to
use a predefined latency for a read
response from the memory to the client
interface. If set to 0, the minimum
possible latency is used.

PHY_LATENCY(3) 19 to 30 This parameter indicates the desired
latency through the PHY for a read
from the time the read command is
issued until the read data is returned
on the client interface.

DM_PORT “ON”
“OFF”

This parameter is used to enable and
disable the generation of the data mask
ports.

MRS_CONFIG 1, 2, 3 This parameter is used to set the
configuration setting in the
RLDRAM II memory register.

MRS_ADDR_MUX “ON”
“OFF”

This parameter is used to set the
address multiplexing setting in the
RLDRAM II memory register.

MRS_DLL_RESET “DLL_ON” This parameter is used to set the DLL
setting in the RLDRAM II memory
register.

MRS_IMP_MATCH “INTERNAL”
“EXTERNAL”

This parameter is used to set the
impedance setting in the memory
register.

MRS_ODT “ON”
“OFF”

This parameter is used to set the ODT
setting in the memory register.

Table 3-15: RLDRAM II Memory Solution Configurable Parameters (Cont’d)

Parameter Value Description

http://www.xilinx.com

300 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 3: RLDRAM II Memory Interface Solution

QK_WIDTH 2 per x18/x36 device

1 per x9 device

This is the memory read clock bus
width.

DK_WIDTH 2 per x36 device

1 per x9/x18 device

This is the memory write clock bus
width.

NUM_DEVICES 1+ This is the number of memory devices.

BURST_LEN 4, 8 This is the memory data burst length.

CLK_PERIOD(1) 3752–11428 This is the FPGA fabric clock period
(ps).

REFCLK_FREQ 200.0, 300.0 This is the reference clock frequency
for IODELAYCTRLs. This value can be
set to 200.0 for any speed grade device
or 300.0 for a -2 or -3 device. For more
information, refer to the IODELAYE1
Attribute Summary table in the
Virtex-6 FPGA SelectIO Resources User
Guide [Ref 4].

FIXED_LATENCY_MODE(2) 0, 1 This parameter indicates whether to
use a predefined latency for a read
response from the memory to the client
interface. If set to 0, the minimum
possible latency is used.

PHY_LATENCY(3) 19 to 30 This parameter indicates the desired
latency through the PHY for a read
from the time the read command is
issued until the read data is returned
on the client interface.

DM_PORT “ON”
“OFF”

This parameter is used to enable and
disable the generation of the data mask
ports.

MRS_CONFIG 1, 2, 3 This parameter is used to set the
configuration setting in the
RLDRAM II memory register.

MRS_ADDR_MUX “ON”
“OFF”

This parameter is used to set the
address multiplexing setting in the
RLDRAM II memory register.

MRS_DLL_RESET “DLL_ON” This parameter is used to set the DLL
setting in the RLDRAM II memory
register.

MRS_IMP_MATCH “INTERNAL”
“EXTERNAL”

This parameter is used to set the
impedance setting in the memory
register.

MRS_ODT “ON”
“OFF”

This parameter is used to set the ODT
setting in the memory register.

Table 3-15: RLDRAM II Memory Solution Configurable Parameters (Cont’d)

Parameter Value Description

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 301
UG406 October 19, 2011

Customizing the Core

MEM_TYPE RLD2_CIO This indicates the type of memory
device attached.

SIM_INIT_OPTION “SKIP_PU_DLY”
“NONE”

This parameter is for simulation only. It
is used to skip some power-up
initialization time.

SIM_CAL_OPTION(4) “FAST_CAL”
“SKIP_CAL”
“NONE”

This parameter is for simulation only. It
is used to speed up calibration.

PHASE_DETECT “ON”
“OFF”

This is the phase detector and adjusts
capture for voltage and temperature
compensation. This parameter is
currently set to “OFF” below 250 MHz
and “ON” above 250 MHz.

DEVICE_ARCH “virtex6” This parameter is reserved for future
use.

RST_ACT_LOW 0, 1 This parameter is used to set the
polarity of sys_rst.

DEBUG_PORT “ON”
“OFF”

 This parameter is always set to OFF in
the sim_tb_top module of the sim
folder, because debug mode is not
required for functional simulations.
Turning on the debug port allows for
use with the VIO of the ChipScope
analyzer. This allows the user to
change the tap settings within the PHY
based on those selected though the
VIO.

IODELAY_GRP Default:
“IODELAY_MIG”

This is an ASCII character string to
define an IODELAY group. It is usually
used when multiple designs are
implemented on the same FPGA.

IODELAY_HP_MODE “ON”
“OFF”

This parameter enables IODELAY
High Performance Mode.

IBUF_LPWR_MODE “ON”
“OFF”

This parameter enables Input Buffer
Low Performance Mode.

INPUT_CLK_TYPE “DIFFERENTIAL”
“SINGLE_ENDED”

This parameter indicates whether the
system uses single-ended or
differential system/reference clocks.
Based on the selected CLK_TYPE, the
clocks must be placed on the correct
input ports. For differential clocks,
sys_clk_p/n must be used. For
single-ended clocks, sys_clk must be
used.

Table 3-15: RLDRAM II Memory Solution Configurable Parameters (Cont’d)

Parameter Value Description

http://www.xilinx.com

302 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 3: RLDRAM II Memory Interface Solution

Design Guidelines
While the Virtex-6 family offers many advanced I/O and clocking-related features to
greatly simplify memory interface design, attention must still be paid to basic board design
criteria for a reliable and high-performance interface.

Specifically, the source synchronous nature of the read and write path interfaces requires
matched board trace lengths for the interface clock, data, and control signals. For example,
the trace lengths of the RLDRAM II memory device input signals (rld_ck_p, rld_ck_n,
rld_cs_n, rld_we_n, rld_ref_n, rld_a, rld_ba, rld_dk_p, rld_dk_n, rld_dq, and rld_dm)
must be well matched to present the control, address, and data lines to the memory device
with adequate setup and hold margins. The implementation of the physical interface
ensures that these signals are center aligned to the rld_ck_p/n and rld_dk_p/n clock edges
when leaving the FPGA device outputs. The board traces must ensure that this
relationship continues to the memory device inputs.

Similarly, the RLDRAM II memory device output signals (rld_dq, rld_qk_p, and rld_qk_n)
must have well-matched trace lengths for the signals to all arrive edge aligned at the inputs
to the Virtex-6 device. This trace-length matching is critical to the implementation of the
direct-clocking read data capture methodology. Any reasonable board design tool can
match these traces within an acceptable tolerance with little effort.

CLKFBOUT_MULT_F This is the MMCM VCO multiplier. It is
set by the MIG tool based on the
frequency of operation.

CLKOUT_DIVIDE This is the VCO output divisor for fast
memory clocks. This value is set by the
MIG tool based on the frequency of
operation.

DIVCLK_DIVIDE This is the MMCM VCO divisor. This
value is set by the MIG tool based on
the frequency of operation.

Notes:
1. The lower limit (maximum frequency) is pending characterization.
2. If desired, the physical layer can operate in fixed-latency mode. This is done by setting

FIXED_LATENCY_MODE to 1. The latency is measured from when a read command is issued on the
PHY to when the read response is present on the client interface. When set to 1, the desired latency
should be set in the PHY_LATENCY parameter.

3. PHY_LATENCY indicates the desired latency from when a read command is issued on the PHY to
when the read response is present on the client interface. This value is only used when the
FIXED_LATENCY_MODE parameter is also set. If the value of this parameter is less than the minimum
possible latency, the core issues an error through the error port in the top-level module, user_top. The
best way to calculate the PHY_LATENCY value for a specific system is to run the system with
FIXED_LATENCY_MODE set to 0 and record the results of the dbg_valid_lat debug signal. To
guarantee the latency across multiple controllers, the largest value of dbg_valid_lat should be used as
the value of PHY_LATENCY for all of the controllers in a system.

4. Core initialization during simulation can be greatly reduced by using SIM_CAL_OPTION. Two
simulation modes are supported. Setting SIM_CAL_OPTION to “FAST_CAL” causes calibration to
occur on only one bit per memory device. This value is then used across the remaining data bits. When
SIM_CAL_OPTION is set to “SKIP_CAL”, no calibration occurs, and the incoming clocks and data are
assumed to be aligned. SIM_CAL_OPTION should be set to “NONE” for implementation or the core
does not function properly.

Table 3-15: RLDRAM II Memory Solution Configurable Parameters (Cont’d)

Parameter Value Description

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 303
UG406 October 19, 2011

Design Guidelines

Trace Length Requirements
The trace lengths described here are for high-speed operation and can be relaxed
depending on the application’s target bandwidth requirements. The package delay should
be included when determining the effective trace length. The most accurate and
recommended method for determining the delay is to use the L and C values for each pin
from the IBIS models. The delay value is determined as the square root of (L × C).
Alternatively, a less accurate method is to use the PARTGen utility. These internal delays
can be found through the FPGA Editor tool. These rules indicate the maximum skew
between RLDRAM II memory signals:

• The maximum skew between any DQ/DM and DK/DK# should be ±15 ps.

• The maximum skew between any DQ and its associated QK/QK# should be ±15 ps.

• The maximum skew between any address and control signals and the corresponding
CK/CK# should be ±50 ps.

• The maximum skew between any DK/DK# and CK/CK# should be ±25 ps.

Pinout Requirements
Any changes to the pinout require changes within the UCF produced by the MIG tool.
When altering the pinout, these rules must be taken into consideration:

• The clocks CK/CK# should be placed in the same bank as the address and control. For
maximum performance, this bank should be located on an inner column. For design
frequencies less than 400 MHz, address/control signals can be placed in the outer
column. (The address and control can be shared across multiple devices.)

• All memory output signals should be placed in a clock region three banks high
starting from the MMCM location horizontal row, one bank up and one bank down to
minimize clock skew.

• QK/QK# must be placed on multi-region clock-capable I/Os.

• For design frequencies higher than 400 MHz, only inner column banks are allowed for
data group selection. For design frequencies 400 MHz and below, both inner and
outer column banks are allowed for data group selection.

• Inner and outer column banks that reside one row above, one row below, and on the
same row of banks consisting of the CK[0] and CK#[0] pins are enabled for data group
pin selection. This restriction is represented by a boundary box called the vicinity box.

• The read clocks QK/QK# and write clocks DK/DK# should be together in the same
bank as data DQ and data mask DM.

• If QK/QK#, DK/DK#, DQ, and DM do not all fit into one bank, any remaining bits of
DQ should be placed in an adjacent bank (one bank up or down) of the same column.

I/O Standards

The MIG tool generates the appropriate UCF for the core with SelectIO™ interface
standards based on the type of input or output to the Virtex-6 FPGA. These standards
should not be changed. Table 3-16 contains a list of the ports with the I/O standard used.

http://www.xilinx.com

304 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 3: RLDRAM II Memory Interface Solution

Debugging Virtex-6 FPGA RLDRAM II Memory Designs
This section defines a step-by-step debugging procedure to assist in the identification and
resolution of any issues that might arise during each phase of the memory interface design
process.

Introduction
The RLDRAM II memory interfaces in the Virtex-6 FPGA simplify the challenges
associated with memory interface design. However, every application environment is
unique and proper due diligence is required to ensure a robust design. Careful attention
must be given to functional testing through simulation, proper synthesis and
implementation, adherence to PCB layout guidelines, and board verification through IBIS
simulation and signal integrity analysis.

This section defines a step-by-step debugging procedure to assist in the identification and
resolution of any issues that might arise during each phase of the design process. Details
are provided on:

• Functional verification using the UNISIM simulation models

• Design implementation verification

• Board layout verification

• Using the RLDRAM II PHY to debug board-level issues

• General board-level debug techniques

The two primary issues encountered during verification of a memory interface are:

• Calibration not completing properly

• Data corruption during normal operation

Table 3-16: I/O Standards

Signal Direction I/O Standard

rld_ck_p, rld_ck_n Output DIFF_HSTL_I

rld_dk_p, rld_dk_n Output DIFF_HSTL_I

rld_cs_n Output HSTL_I

rld_we_n Output HSTL_I

rld_ref_n Output HSTL_I

rld_a Output HSTL_I

rld_ba Output HSTL_I

rld_dm Output HSTL_I

rld_dq Input/Output HSTL_II_T_DCI

rld_qk_p, rld_qk_n Input DIFF_HSTL_II_T_DCI

Notes:
1. All signals operate at 1.5V.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 305
UG406 October 19, 2011

Debugging Virtex-6 FPGA RLDRAM II Memory Designs

Problems might be seen in simulation, hardware, or both due to various root cause causes.
Figure 3-53 shows the overall flow for debugging problems associated with these two
general types of issues.

Debug Tools
Many tools are available to debug memory interface design issues. This section indicates
which resources are useful for debugging a given situation.

Example Design

Generation of an RLDRAM II design using the MIG tool produces an example design and
a user design. The example design includes a synthesizable testbench that has been fully
verified in simulation and hardware. This example design can be used to observe the
behavior of the MIG tool design and can also aid in identifying board-related problems.
Refer to Quick Start Example Design, page 280 for complete details on the example design.
This section also describes using the example design to verify setup of a proper simulation
environment and to perform hardware validation.

Debug Signals

The MIG tool includes a Debug Signals Control option on the FPGA Options screen.
Enabling this feature allows calibration, tap delay, and read data signals to be monitored
using the ChipScope analyzer. Selecting this option port maps the debug signals to VIO
modules of the ChipScope analyzer in the design top module. Refer to Getting Started with
the CORE Generator Software, page 13 for details on enabling this debug feature.

ChipScope Pro Tool

The ChipScope Pro tool inserts logic analyzer, bus analyzer, and virtual I/O software cores
directly into the design. The ChipScope Pro tool allows the user to set trigger conditions to
capture application and the MIG tool signals in hardware. Captured signals can then be
analyzed through the ChipScope Pro Logic Analyzer tool [Ref 6].

Simulation Debug

Figure 3-54 shows the debug flow for simulation.

X-Ref Target - Figure 3-53

Figure 3-53: Virtex-6 FPGA RLDRAM II Memory Debug Flowchart

UG406_c3_54_101609

Symptoms in Simulation/Hardware

- Calibration Failure
- Data Bit/Byte Corruption/Errors

Simulation Debug

Synthesis/Implementation Debug

Hardware Debug

http://www.xilinx.com

306 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 3: RLDRAM II Memory Interface Solution

Verifying the Simulation Using the Example Design

The example design generated by the MIG tool includes a simulation testbench and
parameter file based on memory selection in the MIG tool, and a ModelSim .do script file.
The MIG tool does not provide an RLDRAM II memory model so that must be provided
and added to the simulation by the user. Refer to Quick Start Example Design, page 280 for
detailed steps on running the example design simulation. Successful completion of this
example design simulation verifies a proper simulation environment. This shows that the
simulation tool and Xilinx libraries are set up correctly. For detailed information on setting
up Xilinx libraries, refer to COMPXLIB in the Command Line Tools User Guide [Ref 7] and the
Synthesis and Simulation Design Guide [Ref 8]. For simulator tool support, refer to the
Virtex-6 FPGA Memory Interface Solutions Data Sheet [Ref 9].

A working example design simulation completes memory initialization and runs traffic in
response to the testbench stimulus. Successful completion of memory initialization and
calibration results in the assertion of the cal_done signal. When this signal is asserted, the
testbench takes control and begins executing writes and reads according to its
parameterization.

Table 3-17 and Table 3-18 show the signals and parameters of interest, respectively, during
simulation.

X-Ref Target - Figure 3-54

Figure 3-54: Simulation Debug Flowchart

Verify Successful Simulation Using
Example Design. Identify any Issues with

Simulation Environment

Debug Issues with User Design Simulation

UG406_c3_55_101609

Open WebCase

Table 3-17: Signals of Interest During Simulation

Signal Name Usage

cal_done This signal indicates completion of calibration.

compare_error This signal indicates a mismatch between the data written from the
UI and data received during a read on the UI. This signal is a part of
the example design. A single error asserts this signal and is held
until the design is reset.

cmp_err This signal indicates a mismatch between the data written from the
UI and the data received during a read on the UI. This signal is a part
of the example design. This signal is asserted each time a data
mismatch occurs.

user_cmd_en This signal indicates if a command is valid.

user_rd_cmd This signal is asserted if the command is a read operation request.

user_addr This is the address location for the current command.

user_ba This is the bank address location for the current command.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 307
UG406 October 19, 2011

Debugging Virtex-6 FPGA RLDRAM II Memory Designs

When SIM_INIT_OPTION is set to SKIP_PU_DLY, and SIM_CAL_OPTION is set to
FAST_CAL, the MIG tool design executes an abbreviated calibration sequence. For the
design to properly initialize and calibrate the full memory array in hardware, the top-level
MIG tool design file (example_top.v/vhd) cannot use any abbreviated value for these
parameters.The MIG tool output properly sets the abbreviated values in the testbench and
the full range values in the top-level design module.

Figure 3-55 shows a high-level view of a successful simulation using the provided example
design with the abbreviated simulation parameters set, as described in Table 3-17,
page 306. The simulation can be divided into these main sections: Memory Initialization,
Calibration, and Testbench.

user_wr_en This signal is asserted when the user_wr_data is valid. This signal is
necessary for write commands.

user_wr_data This signal is the write data provided for write commands.

user_wr_dm This signal is the data mask for masking off, and not writing, all of
the data in a given write transaction.

user_afifo_empty This signal indicates that the command and address FIFO is empty.

user_afifo_full This signal indicates that the command and address FIFO is full.
When asserted additional commands and data is not accepted.

user_wdfifo_empty This signal indicates that the write data FIFO is empty.

user_wdfifo_full This signal indicates that the write data FIFO is full. When asserted
additional Write data is not accepted.

user_rd_valid Asserted when user_rd_data is valid.

user_rd_data Read data returned from the memory as a result of a read command.

Table 3-18: Parameters of Interest During Simulation

Signal Name Usage

SIM_INIT_OPTION This parameter sets the simulation initialization procedure.

SIM_CAL_OPTION This parameter sets the simulation calibration procedure.

Table 3-17: Signals of Interest During Simulation

Signal Name Usage

http://www.xilinx.com

308 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 3: RLDRAM II Memory Interface Solution

Memory Initialization

The memory initialization skips the initial 200 µs delay but completes all remaining steps
as defined by the Micron RLDRAM II specification.

Calibration

Calibration completes read leveling, write calibration, and read enable calibration. This is
completed over two stages. This sequence successfully completes when the cal_done
signal asserts. For more details, refer to PHY, page 104.

The first stage performs per-byte read leveling calibration. The data pattern used during
this stage is 00ff00ff00ffff00 and is first written to the memory as shown in
Figure 3-56.

X-Ref Target - Figure 3-55

Figure 3-55: Waveforms and Simulation Transcripts Showing Successful Example Design Completion

UG406_c3_56_102109

����������	
��� ��	�������� �	�����������	

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 309
UG406 October 19, 2011

Debugging Virtex-6 FPGA RLDRAM II Memory Designs

This pattern is then continuously read back while the per-bit calibration is completed, as
shown in Figure 3-57.

X-Ref Target - Figure 3-56

Figure 3-56: Writes for First Stage Read Calibration

UG406_c3_57_102109

X-Ref Target - Figure 3-57

Figure 3-57: Reads for First Stage Read calibration

UG406_c3_58_102109

http://www.xilinx.com

310 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 3: RLDRAM II Memory Interface Solution

The second stage performs a read enable calibration. The data pattern used during this
stage is AAAA. The data pattern is first written to the memory, as shown in Figure 3-58.

The same location is read some time later for read enable calibration. An additional read is
performed so the read bus is driven to a different value. This is mostly required in

X-Ref Target - Figure 3-58

Figure 3-58: Write for Second Stage Read Calibration

UG406_c3_59_102109

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 311
UG406 October 19, 2011

Debugging Virtex-6 FPGA RLDRAM II Memory Designs

hardware to ensure that the read calibration can distinguish the correct data pattern, as
shown in Figure 3-59.

After second stage calibration completes, cal_done asserts signifying successful
completion of the entire calibration process.

Testbench

After cal_done asserts, the testbench takes control writing to and reading from the
memory. The data written is compared to the data read back. Any mismatches trigger an

X-Ref Target - Figure 3-59

Figure 3-59: Reads for Second Stage Read Calibration

UG406_c3_60_102109

http://www.xilinx.com

312 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 3: RLDRAM II Memory Interface Solution

assertion of the error signal. Figure 3-60 below shows successful implementation of the
testbench with no assertions on error.

Debug Issues with User Design Simulation

After the simulation environment and parameter settings are verified by successful
simulation of the example design, issues with the user design simulation can be
investigated. Because the environment and parameters are verified to work properly,
calibration in the user design completes without error as long as no RTL changes exist.

Data Errors

Issues that might be seen with user design simulation exist within the generation of user
writes and reads. Thus, it is crucial to understand how to drive the UI to properly send
writes and reads. For more information, refer to User Interface, page 70 and Interfacing to
the Core, page 115.

Proper Write and Read Commands

When sending write and read commands, the user must properly assert and deassert the
corresponding UI inputs. Refer to User Interface, page 70 and Interfacing to the Core,
page 115 for full details. The testbench design provided within the example design can be
used as a further source of proper behavior on the UI.

To debug data errors on the RLDRAM II interface, UI signals must be pulled into the
simulation waveform.

In the ModelSim Instance window, highlight u_ip_top to display the necessary UI signals
in the Objects window, as shown in Figure 3-61. Highlight the user interface signals noted
in Table 3-17, page 306, right-click, and select Add → To Wave → Selected Signals.

X-Ref Target - Figure 3-60

Figure 3-60: Testbench Operation After Completion of Calibration

UG406_c3_61_102109

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 313
UG406 October 19, 2011

Debugging Virtex-6 FPGA RLDRAM II Memory Designs

The waveforms shown in Figure 3-63 through Figure 3-65 provide examples of a write and
read on both the UI and RLDRAM II interface.

X-Ref Target - Figure 3-61

Figure 3-61: ModelSim Instance Window

UG406_c3_62_102109

http://www.xilinx.com

314 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 3: RLDRAM II Memory Interface Solution

X-Ref Target - Figure 3-62

Figure 3-62: User Interface Write

UG406_c3_63_102109

X-Ref Target - Figure 3-63

Figure 3-63: RLDRAM II Interface Write

UG406_c3_64_102109

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 315
UG406 October 19, 2011

Debugging Virtex-6 FPGA RLDRAM II Memory Designs

X-Ref Target - Figure 3-64

Figure 3-64: User Interface Read

UG406_c3_65_102109

X-Ref Target - Figure 3-65

Figure 3-65: RLDRAM II Interface Read

UG406_c3_66_102109

http://www.xilinx.com

316 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 3: RLDRAM II Memory Interface Solution

Synthesis and Implementation Debug

Figure 3-66 shows the debug flow for synthesis and implementation.

Verify Successful Synthesis and Implementation

The example design and user design generated by the MIG tool include
synthesis/implementation script files and user constraint files (.ucf). These files should be
used to properly synthesize and implement the targeted design and generate a working
bitstream. The synthesis/implementation script file, called ise_flow.bat, is located in
both example_design/par and user_design/par directories. Execution of this script
runs either the example design or the user design through synthesis, translate, MAP, PAR,
TRACE, and BITGEN. The options set for each of these processes are the only options that
have been tested with the RLDRAM II MIG tool designs. A successfully implemented
design completes all processes with no errors (including zero timing errors).

Verify Modifications to the MIG Tool Output

The MIG tool allows the user to select the FPGA banks for the memory interface signals.
Based on the banks selected, the MIG tool outputs a UCF with all required location
constraints. This file is located in both example_design/par and
user_design/par directories and should not be modified.

The MIG tool outputs open source RTL code parameterized by top-level HDL parameters.
These parameters are set by the MIG tool and should not be modified manually. If changes
are required, such as decreasing or increasing the frequency, the MIG tool should be rerun
to create an updated design. Manual modifications are not supported and should be
verified independently in behavioral simulation, synthesis, and implementation.

Identifying and Analyzing Timing Failures

The MIG tool RLDRAM II designs have been verified to meet timing using the example
design across a wide range of configurations. However, timing violations might occur,
such as when integrating the MIG tool design with the user’s specific application logic.
Any timing violations that are encountered must be isolated. The timing report output by
TRACE (.twx/.twr) should be analyzed to determine if the failing paths exist in the MIG
tool RLDRAM II design or the UI (backend application) to the MIG tool design. If failures

X-Ref Target - Figure 3-66

Figure 3-66: Synthesis and Implementation Debug Flowchart

Verify Successful Synthesis and
Implementation Using Example Design

Verify Any Modification to the MIG Output

Verify Successful Synthesis and
Implementation Using User Design

UG406_c2_67_102309

Verify Design Timing in TRACE

Open WebCase

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 317
UG406 October 19, 2011

Debugging Virtex-6 FPGA RLDRAM II Memory Designs

are encountered, the user must ensure the build options (that is, XST, MAP, PAR) specified
in the ise_flow.bat file are used.

If failures still exist, Xilinx has many resources available to aid in closing timing. The
PlanAhead™ tool [Ref 10] improves performance and quality of the entire design. The
Xilinx Timing Constraints User Guide [Ref 11] provides valuable information on all available
Xilinx constraints.

Hardware Debug
Figure 3-67 shows the debug flow for hardware.

Verify Design Guidelines

See Design Guidelines, page 302 for specifications on termination, I/O standards, and
trace matching. The guidelines provided therein are specific to the RLDRAM II memory. It
is important to verify that these guidelines have been referred to during board layout.
Failure to follow these guidelines and/or modifications to a MIG tool provided pinout, or
both, can result in problematic behavior in hardware as discussed in this debugging
section.

Clocking

The external clock source should be measured to ensure frequency, stability (jitter), and
usage of the expected FPGA pin. The designer must ensure that the design follows all
clocking guidelines. If clocking guidelines have been followed, the interface should be run
at a slower speed. Not all designs or boards can accommodate slower speeds. Lowering
the frequency increases the marginal setup or hold time, or both, due to PCB trace
mismatch, poor signal integrity, or excessive loading. When lowering the frequency, the
MIG tool should be rerun to regenerate the design with the lower clock frequency. Portions

X-Ref Target - Figure 3-67

Figure 3-67: Hardware Debug Flowchart

Verify Memory Implementation Guidelines
are Properly Followed

Run SI Simulation Using IBIS

Run Example Design

UG406_c3_68_102309

Isolate Bit Errors

Board Measurements

- Measure Signal Integrity
- Measure Supply and VREF Voltages
- Measure Bus Timing

Check Clocking/Run Interface at
Slower Frequency

Open WebCase

http://www.xilinx.com

318 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 3: RLDRAM II Memory Interface Solution

of the calibration logic are sensitive to the CLK_PERIOD parameter; thus manual
modification of the parameter is discouraged.

Verify Board Pinout

The user should ensure that the pinout provided by the MIG tool is used without
modification. Then, the board schematic should be compared to the
<design_name>.pad report generated by PAR. This step ensures that the board pinout
matches the pins assigned in the implemented design.

Run Signal Integrity Simulation with IBIS Models

To verify that board layout guidelines have been followed, signal integrity simulations
must be run using the I/O buffer information specification (IBIS). These simulations
should always be run for both pre-board and post-board layouts. The purpose of running
these simulations is to confirm the signal integrity on the board.

The ML561 Hardware-Simulation Correlation chapter of the Virtex-5 FPGA ML561 Memory
Interfaces Development Board User Guide [Ref 12] can be used as a guideline. This chapter
provides a detailed look at signal integrity correlation results for the ML561 board. It can
be used as an example for signal integrity analysis. It also provides steps to create a design-
specific IBIS model to aid in setting up the simulations. While this guide is specific to
Virtex-5 devices and the ML561 development board, the principles therein can be applied
to Virtex-6 FPGA MIG tool designs.

Run the Example Design

The MIG tool provided example design is a fully verified design that can be used to test the
memory interface on the board. It rules out any issues with the backend logic interfacing
with the MIG tool core. In addition, the testbench provided by the MIG tool can be
modified to send out different data patterns that test different board-level concerns.

Debugging Common Hardware Issues

When calibration failures and data errors are encountered in hardware, the ChipScope
analyzer should be used to analyze the behavior of MIG tool core signals. For detailed
information about using the ChipScope analyzer, refer to the ChipScope Pro 11.1 Software
and Cores User Guide [Ref 14].

A good starting point in hardware debug is to load the provided example_design onto the
board in question. This is a known working solution with a testbench design that checks
for data errors. This design should complete successfully with the assertion of cal_done
and no assertions of compare_error. Assertion of cal_done signifies successful completion
of calibration while no assertions of compare_error signifies that the data is written to and
read from the memory compare with no data errors.

The cmp_err signal can be used to indicate if a single error was encountered or if multiple
errors are encountered. With each error encountered, cmp_err is asserted so that the data
can be manually inspected to help track down any issues.

Isolating Bit Errors

An important hardware debug step is to try to isolate when and where the bit errors occur.
Looking at the bit errors, these should be identified:

• Are errors seen on data bits belonging to certain CQ clock groups?

• Are errors seen on accesses to certain addresses of memory?

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 319
UG406 October 19, 2011

Debugging Virtex-6 FPGA RLDRAM II Memory Designs

• Do the errors only occur for certain data patterns or sequences?

This can indicate a shorted or open connection on the PCB. This can also indicate an
SSO or crosstalk issue.

It might be necessary to isolate whether the data corruption is due to writes or reads. This
case can be difficult to determine because if writes are the cause, read back of the data is
bad as well. In addition, issues with control or address timing affect both writes and reads.
Some experiments that can be tried to isolate the issue are:

• If the errors are intermittent, have the design issue a small initial number of writes,
followed by continuous reads from those locations. If the reads intermittently yield
bad data, there is a potential read problem.

• Increase the time between write and read transactions to check if collisions might be
occurring on the data bus.

• Check/vary only write timing:

• Check that the external termination resistors are populated on the PCB or if the
ODT mode is set properly.

• Use ODELAY to vary the phase of D relative to the K clocks.

• Vary only read timing:

• Check the IDELAY values after calibration. Look for variations between IDELAY
values. IDELAY values should be very similar for DQs in the same QK group.

• Vary the IDELAY taps after calibration for the bits that are returning bad data.
This affects only the read capture timing.

Debugging the Core
The Debug port is a set of input and output signals that either provide status (outputs) or
allow the user to make adjustments as the design is operating (inputs). When generating
the RLDRAM II design through the MIG tool, an option is provided to turn the Debug Port
on or off. When the Debug port is turned off, the outputs of the debug port are still
generated but the inputs are ignored. When the Debug port is turned on, the inputs are
valid and must be driven to a logical value. Driving the signals incorrectly on the debug
port might cause the design to fail or have less read data capture margin.

When running the core in hardware, a few key signals should be inspected to determine
the status of the design. The dbg_phy_status bus described in Table 3-19 consists of status
bits for various stages of calibration. Checking the dbg_phy_status bus gives initial
information that can aid in debugging an issue that might arise, determining which
portion of the design to look at, or looking for some common issues.

Table 3-19: Physical Layer Simple Status Bus Description

Debug Port Signal Name Description If Problems Arise

dbg_phy_status[0] iodelay_ctrl_rdy IODELAY
blocks are ready
to be used.

Check that the IODELAY
clock is supplied properly
with the expected frequency.

dbg_phy_status[1] mmcm_locked MMCM has
locked and is
generating the
system clocks.

Check that the system clock
is supplied properly with the
expected frequency. Check
the polarity of the reset.

http://www.xilinx.com

320 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 3: RLDRAM II Memory Interface Solution

The results of read calibration are provided as part of the Debug port as various output
signals. These signals can be used to capture and evaluate the results of read calibration.
Read calibration uses the IODELAY to center the capture clock in the data valid window
for captured data. The algorithm shifts the IODELAY values and looks for edges of the data
valid window on a per-bit basis as part of the calibration procedure.

DEBUG_PORT Signals

The top-level file, ip_top, provides several output signals that can be used to debug the
core. Each debug signal output is prefixed with dbg_. These signals are listed in Table 3-20,
page 321 along with descriptions of the data they provide.

dbg_phy_status[2] init_done RLDRAM 2
initialization
sequence is
complete.

N/A

dbg_phy_status[3] cal_stage1_start Stage 1 read
calibration start
signal.

Verify the expected data is
being returned from the
memory

dbg_phy_status[4] cal_stage2_start Stage 2 read
calibration start
signal.

Check the IODELAY values
set for stage 1 read
calibration and check the
data for stage 2.

dbg_phy_status[5] dbg_pd_calib_start Phase detector
calibration start
signal.

N/A

dbg_phy_status[6] dbg_pd_calib_done Phase detector
calibration
complete.

Check the system clock
frequency as the phase
detector has a lower
frequency limit. (The phase
detector should be off below
250 MHz.)

dbg_phy_status[7] cal_done Calibration
complete.

N/A

Notes:
1. N/A indicates that as long as previous stages have completed this stage is also completed.

Table 3-19: Physical Layer Simple Status Bus Description

Debug Port Signal Name Description If Problems Arise

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 321
UG406 October 19, 2011

Debugging Virtex-6 FPGA RLDRAM II Memory Designs

Table 3-20: Core Debug Signals

Signal
Valid Clock

Domain
Direction Description

dbg_phy_cmd_n[5:0] clk Output These are internal command signals sent
to the IOBs that are useful for controller or
initialization verification:

[0] = ref[1]

[1] = we[1]

[2] = cs[1]

[3] = ref[0]

[4] = we[0]

[5] = cs[0]

dbg_phy_addr[ADDR_WIDTH × 2 – 1:0] clk Output This is the internal address sent to the
IOBs (rise0, rise1).

dbg_phy_ba[BANK_WIDTH × 2 – 1:0] clk Output This is the internal bank address sent to
the IOBs (rise0, rise1).

dbg_phy_wr_data[DATA_WIDTH × 4 – 1:0] clk Output This is the write data sent to the IOBs
(rise, fall).

dbg_phy_init_sm[31:0] clk Output This is the general-purpose initialization
debug port.

dbg_rd_stage1_cal[255:0] clk Output These are the debug signals for stage 1
calibration. See Table 2-19, page 240 for a
signal map.

dbg_pd_calib_start[QK_WIDTH – 1:0] clk Output This signal indicates that the phase
detector is starting.

dbg_pd_calib_done[QK_WIDTH – 1:0] clk Output This signal indicates that the phase
detector is complete.

dbg_phy_status[7:0] clk Output This is the general debug status. It is
made up of these signals:

[0] = iodelay_ctr_rdy

[1] = mmcm_locked

[2] = init_done

[3] = cal_stage1_start

[4] = cal_stage2_start

[5] = dbg_pd_calib_start

[6] = dbg_pd_calib_done

[7] = cal_done

dbg_cq_tapcnt[TAP_BITS × QK_WIDTH – 1:0] clk Output This is a bus made up of IODELAY tap
counts for various CQ bits.

dbg_cqn_tapcnt[TAP_BITS × QK_WIDTH – 1:0] clk Output This is a bus made up of IODELAY tap
counts for various CQ# bits.

dbg_q_tapcnt[TAP_BITS × DATA_WIDTH –
1:0]

clk Output This is a bus made up of IODELAY tap
counts for various DQ bits.

http://www.xilinx.com

322 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 3: RLDRAM II Memory Interface Solution

dbg_inc_cq_all clk Input This signal increments taps on all CQ
clock bits.

dbg_inc_cqn_all clk Input This signal increments taps on all CQ#
clock bits.

dbg_inc_q_all clk Input This signal increments taps on all data Q
bits.

dbg_dec_cq_all clk Input This signal decrements taps on all CQ
clock bits.

dbg_dec_cqn_all clk Input This signal decrements taps on all CQ#
clock bits.

dbg_dec_q_all clk Input This signal decrements taps on all data Q
bits.

dbg_inc_cq clk Input This signal increments the select clock CQ
bit.

dbg_inc_cqn clk Input This signal decrements the select clock
CQ# bit.

dbg_inc_q clk Input This signal increments the select data Q
bit.

dbg_dec_cq clk Input This signal decrements the select clock
CQ bit.

dbg_dec_cqn clk Input This signal decrements the select clock
CQ# bit.

dbg_dec_q clk Input This signal decrements the selected DQ
IODELAY tap value.

dbg_sel_cq[CQ_BITS – 1:0] clk Input This is the selected QK bit to modify.

dbg_sel_cqn[CQ_BITS – 1:0] clk Input This signal is not used.

dbg_sel_q[Q_BITS – 1:0] clk Input This is the selected DQ bit to modify.

dbg_pd_off clk Input This input should be driven High to
disable the read phase detector.

dbg_clear_error clk Input This is the signal to clear testbench errors.
It is useful in checking for single bit errors
or measuring a read window.

Table 3-20: Core Debug Signals (Cont’d)

Signal
Valid Clock

Domain
Direction Description

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 323
UG406 October 19, 2011

Debugging Virtex-6 FPGA RLDRAM II Memory Designs

Additional read path debug signals are listed in Table 3-21.

Table 3-21: Additional Read Path Debug Signals

Signal Module
Valid Clock

Domain
Description

dbg_valid_lat[4:0] phy_read_vld_gen clk This is the latency in cycles of
the delayed read command.

dbg_cq_num[CQ_BITS – 1:0] phy_read_stage1_cal clk This signal indicates the current
CQ/CQ# being calibrated.

dbg_q_bit[Q_BITS – 1:0] phy_read_stage1_cal clk This signal indicates the current
Q being calibrated.

dbg_error_max_latency[QK_WIDTH – 1:0] phy_read_stage2_cal clk This signal indicates that the
latency could not be measured
before the counter overflowed.
There is one error bit for each
device.

dbg_error_adj_latency phy_read_stage2_cal clk This signal indicates that the
target PHY_LATENCY could
not be achieved.

dbg_rd_stage2_cal[127:0] phy_read_stage2_cal clk This is a general-purpose
stage 2 calibration bus.

dbg_phase[QK_WIDTH – 1:0] phy_read_data_align clk This signal indicates whether
or not to realign the data to
correct the CLK/CLKB
relationship relative to the
CLKDIV in the ISERDES. There
is one dbg_phase bit per QK
clock pair.

dbg_inc_latency[QK_WIDTH – 1:0] phy_read_dcb clk This signal indicates that
latency through the DCB
should be increased. There is
one increment latency signal
for each device, and they are all
concatenated together.

dbg_dcb_wr_ptr[5 × QK_WIDTH – 1:0] phy_read_dcb clk_rd This is the write pointer into the
data block RAM. The pointer
for each device is four bits long
and concatenated together.

dbg_dcb_rd_ptr[5 × QK_WIDTH – 1:0] phy_read_dcb clk This is the read pointer into the
data block RAM. The pointer
for each device is four bits long
and concatenated together.

dbg_dcb_din[4 × DATA_WIDTH – 1:0] phy_read_dcb clk_rd This is the data input into the
DCB.

dbg_dcb_dout[4 × DATA_WIDTH – 1:0] phy_read_dcb clk This is the data output from the
DCB.

dbg_clk_rd[QK_WIDTH – 1:0] rld_phy_iob clk_rd This is the aligned read clock.

http://www.xilinx.com

324 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 3: RLDRAM II Memory Interface Solution

When checking the results of read calibration, check the tap values for the capture clock
(cq_dly_tap and cqn_dly_tap) and the tap settings for each data bit (q_dly_tap). For a
single clock group, the IODELAY tap settings should not vary widely. Figure 3-68 shows
stage 1 read calibration running for Q bit 0, as well as some signals of interest.

The RLDRAM II memory signals being provided to the IOB logic are fed back in the debug
port. The user can inspect the commands and command sequence presented to the
memory device (dbg_phy_cmd_n, dbg_phy_addr, dbg_phy_ba, dbg_phy_wr_data) as
shown in Table 3-69. These signals can be used to verify controller functionality or to verify
that the initialization sequence is being generated as expected.

dbg_iserdes_0[DATA_WIDTH × 2 – 1:0] rld_phy_top clk_rd These are the ISERDES outputs
{rise0, fall0}.

dbg_iserdes_1[DATA_WIDTH × 2 – 1:0] rld_phy_top clk_rd These are the ISERDES outputs
{rise1, fall1}.

Table 3-21: Additional Read Path Debug Signals (Cont’d)

Signal Module
Valid Clock

Domain
Description

X-Ref Target - Figure 3-68

Figure 3-68: Stage 1 Read Calibration

UG406_c3_69_102709

Read Data from ISERDES

IODELAY Taps
on Capture Clock

Gaps Caused by
Refresh Commands

Size of Window
(IODELAY Taps)

IODELAY
Taps on Data

Correct Read Data Pattern
is Found (Data Valid)

Shift the Data One
Bit-Time Inside the
FPGA for Alignment

Current Bit Being Calibrated

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 325
UG406 October 19, 2011

Debugging Virtex-6 FPGA RLDRAM II Memory Designs

Manual control signals are provided in the debug port for adjusting IODELAY tap values
during normal operation. These can be adjusted to check for issues or to measure the data
valid window timing. Figure 3-70 shows one such example setup in the VIO window of the
ChipScope analyzer.

X-Ref Target - Figure 3-69

Figure 3-69: Bank Address and Commands for Stage 1 Calibration

UG406_c3_70_102109

http://www.xilinx.com

326 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 3: RLDRAM II Memory Interface Solution

To measure the read capture window, the phase detector must be verified as not running.
This can be accomplished by generating a design without the phase detector enabled
(PHASE_DETECT set to off) or by asserting the dbg_pd_off signal. The phase detector has
control over the capture clock IODELAY taps. The IODELAY value is adjusted by the phase
detector in the VIO window of the ChipScope analyzer, while the data bit IODELAY values
are switching between the values used during reads and writes (always 0 taps for writes).
After the phase detector is turned off, the IODLEAY taps can be moved manually.

X-Ref Target - Figure 3-70

Figure 3-70: Debug Port Control Signals

UG406_c3_71_102709

Physical Layer Status

Testbench Status
(With Button
to Clear an Error)

Capture Clock
IODELAY Tap Setting

Data Bit IODELAY
Tap Setting
(Only Nine Shown)

Select Capture Clock
to increment
(With Controls Set
for Single Pulse)

Select Data Bit to
Increment
(With Controls Set
for Single Pulse)

Control Set for Single
Pulse to Control All
Capture Clocks and
Data Bits

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 327
UG406 October 19, 2011

Debugging Virtex-6 FPGA RLDRAM II Memory Designs

The read capture clock taps can be adjusted by incrementing the taps. A single pulse on the
inc_cq button increments the taps on the capture clock by one. The taps should be
incremented until the compare_error signal is asserted. This indicates that the testbench
has detected an error the read data window is at the edge. It should be noted where this
edge occurred. The capture clock IODELAY taps should be decremented back to the
original location found during calibration. After the IODELAY taps are back to the starting
location, the clear_error control signal should be pulsed to clear the testbench error latch.
The capture clock IODELAY taps should be decremented until the compare_error signal,
the other edge of the window, is again asserted. It should be noted where this edge occurs.
The capture clock back should either be returned back to the original IODELAY setting
from calibration and the testbench error cleared, or the design should be reset. The read
window is the first edge minus the second edge in IODELAY taps for the given clock group
being adjusted. This tap value should be multiplied by the IODELAY tap resolution to
obtain the window in ps.

Board Measurements

The signal integrity of the board and bus timing must be analyzed. The ML561
Hardware-Simulation Correlation chapter of the Virtex-5 FPGA ML561 Memory Interfaces
Development Board User Guide [Ref 12] describes expected bus signal integrity. While this
guide is specific to Virtex-5 devices and the ML561 development board, the principles
therein can be applied to Virtex-6 FPGA MIG tool designs.

Other important board measurements are the reference voltage levels. It is important that
these voltage levels be measured when the bus is active. These levels can be correct when
the bus is idle, but might drop when the bus is active.

http://www.xilinx.com

328 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Chapter 3: RLDRAM II Memory Interface Solution

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 329
UG406 October 19, 2011

Appendix A

Additional Resources

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see the
Xilinx Support website at:

http://www.xilinx.com/support.

For a glossary of technical terms used in Xilinx documentation, see:

http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

The Solution Center specific to Virtex®-6 FPGA Memory Interface Solutions is located at
Xilinx MIG Solution Center.

References
These references provide supplemental information useful for this document:

1. ARM® AMBA® Specifications
http://www.arm.com/products/system-ip/amba/amba-open-specifications.php

2. UG683, EDK Concepts, Tools, and Techniques

3. UG111, Embedded System Tools Reference Manual

4. UG361, Virtex-6 FPGA SelectIO Resources User Guide

5. TN-47-01, DDR2-533 Memory Design Guide For Two-DIMM Unbuffered Systems. Micron
Technology, Inc.

6. ChipScope Pro Logic Analyzer tool
http://www.xilinx.com/tools/cspro.htm

7. UG628, Command Line Tools User Guide, COMPXLIB

8. UG626, Synthesis and Simulation Design Guide

9. DS186, Virtex-6 FPGA Memory Interface Solutions Data Sheet

10. PlanAhead™ Design Analysis tool
http://www.xilinx.com/tools/planahead.htm

11. UG612, Xilinx Timing Constraints User Guide

12. UG199, Virtex-5 FPGA ML561 Memory Interfaces Development Board User Guide

13. DS152, Virtex-6 FPGA Data Sheet

http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf
http://www.xilinx.com/support/answers/34243.htm
http://www.xilinx.com/support
http://www.xilinx.com/support/solcenters.htm
http://www.arm.com/products/system-ip/amba/amba-open-specifications.php
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_3/edk_ctt.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_3/est_rm.pdf
http://www.xilinx.com/support/documentation/virtex-6.htm
http://download.micron.com/pdf/technotes/ddr2/tn_47_01.pdf
http://www.xilinx.com/tools/cspro.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_3/devref.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_3/sim.pdf
http://www.xilinx.com/support/documentation/ipinterconnect_mig.htm
http://www.xilinx.com/tools/planahead.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_3/ug612.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug199.pdf
http://www.xilinx.com/support/documentation/virtex-6.htm
http://www.xilinx.com

330 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Appendix A: Additional Resources

14. UG029, ChipScope Pro Software and Cores User Guide

15. Virtex-6 FPGA ML605 Reference Designs
http://www.xilinx.com/products/boards/ml605/reference_designs.htm

List of Acronyms
The following table defines the acronyms used in this document.

Acronym Definition

AXI Advanced Extensible Interface

BSB Base System Builder

CIO Common I/O

DCB Data Circular Buffer

DCI Digitally Controlled Impedance

DDR Double Data Rate

DLL Delay Locked Loop

ECC Error Correction Code

EDK Embedded Development Kit

FPGA Field Programmable Gate Array

FPS Fine Phase Shift

IBIS I/O Buffer Information Specification

ICON Integrated Controller

ILA Integrated Logic Analyzer

IOB Input/Output Block

LFSR Linear Feedback Shift Register

LUT Look-Up Table

MC Memory Controller

MIG Memory Interface Generator

MMCM Mixed-Mode Clock Manager

MRCC Multi-Region Clock Capable

MRS Mode Register Set

NOP No Operation

ODT On-Die Termination

OTF On the Fly

PHY Physical Layer

PRBS Pseudo Random Binary Sequence

QDR Quad Data Rate

http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_3/chipscope_pro_sw_cores_ug029.pdf
http://www.xilinx.com/products/boards/ml605/reference_designs.htm
http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 331
UG406 October 19, 2011

List of Acronyms

RLDRAM Reduced-Latency Dynamic Random Access Memory

SDR Single Data Rate

SDRAM Synchronous Dynamic Random Access Memory

SPD Serial Presence Detect

SRAM Static Random Access Memory

SRCC Single-Region Clock Capable

SSO Simultaneous Switching Output

TDM Time Division Multiplexing

TIG Timing Ignore

UCF User Constraints File

UI User Interface

VCO Voltage Controlled Oscillator

VIO Virtual I/O

XPS Xilinx Platform Studio

Acronym Definition

http://www.xilinx.com

332 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Appendix A: Additional Resources

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 333
UG406 October 19, 2011

Appendix B

Simulation Help

The generic simulation testbench supports MIG generated designs. With this testbench, the
user can simulate the design generated from the MIG tool.

Introduction
The sim folder provides the simulation environment for the generated design in both the
ModelSim and ISim environments. The folder instantiates the various entities or modules
required to simulate the design properly, and generates the required system input signals
such as clocks and resets into the design. Figure B-1 depicts a block diagram of the
simulation environment.

The simulation testbench module integrates the complete system through port maps, a
design clock, and reset generation logic. The complete system can be divided into these
blocks:

• Clock and Reset Generator: This block generates the clocks and system reset signals.

• Traffic Generator (optional instance): This block is a part of the testbench module for
the user design. The traffic generator is a synthesizable module that provides test
inputs such as design data, addresses, and commands. In designs with a testbench,
the testbench is part of the design top module.

• Design Top: In the example design, this block connects with the clocks, reset, memory
interface signals, and status signals. In the user design, The Design Top block includes
the controller, infrastructure, and optional traffic generator.

• Memory Model: This block is provided with the memory core of the component
selected. The MIG tool provides memory models in Verilog only. VHDL models are

X-Ref Target - Figure B-1

Figure B-1: Block Diagram of Simulation Environment

UG406_a1_91_031510

Traffic
Generator
(optional)

Design
Top

Clock and Reset
Generator

Memory
Model

Simulation Testbench

http://www.xilinx.com

334 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Appendix B: Simulation Help

not provided. The MIG tool provides Micron vendor memory models only. If the user
is using other vendor memories (Samsung or Cypress), the memory models should be
downloaded from the web.

The simulation testbench module can be in Verilog or VHDL, depending on the HDL used
in the design. Simulation Testbench Top refers to the sim_tb_top module in the sim
folder.

Supported Features
Supported features include:

• All component widths

• Designs with or without a testbench

• All supported components and DIMMs (UDIMMs, SODIMMs, and RDIMMs)

• Twin-die components and dual-rank DIMMs for DDR2 and dual-rank DIMMs for
DDR3 SDRAM designs

• A multi-controller simulation testbench for the Virtex-6 FPGA QDRII+ SRAM and
DDR3 SDRAM.

Unsupported Features
VHDL memory models are not supported.

Note: The simulation testbench top file generated is unique for the design generated from the MIG
tool. Design parameters should not be changed after generating the design, except for the
RST_ACT_LOW parameter.

Simulating the Design
Support is provided for these simulators:

• ModelSim

• ISim

Simulations Using ModelSim
The design can be simulated using the ModelSim GUI either manually, or by calling the
sim.do file in ModelSim.

Method 1: Manual Simulation

1. Invoke ModelSim.

2. Create a new project.

3. Add design files from the rtl folder and simulation files from the sim folder.
Only .v or .vhd files are required to be added into the project. It is not necessary to
add the .vh files in the sim folder.

4. Map the unisim or unsims_ver libraries. This is required to compile Xilinx
primitives used in the design.

5. Compile the design.

6. Load the design and map the library to it. For example, the following command is used
to load a Virtex-6 FPGA DDR2 SDRAM design in Verilog:

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 335
UG406 October 19, 2011

Simulating the Design

vsim -t ps +notimingchecks -L unisims_ver work.sim_tb_top glbl

The following command loads the same design in VHDL:

vsim -t ps +notimingchecks -L unisim work.sim_tb_top glbl

7. After loading the design, run the simulation for an amount of time based on the traffic
to be generated (typically 200 µs, if memory initialization is skipped).

Method 2: Using the sim.do File

1. Invoke ModelSim.

2. Create a new project. (Optional.)

3. Change the directory to the working sim folder. (Optional.)

4. If the directory is set to the working directory, execute this command:

do sim.do

For example:

do E:/simulations/test1/example_design/sim/sim.do

Changing Simulation Run Time
Memory write and read can be performed correctly after calibration/initialization of the
design at a given frequency. Run time also depends upon the calibration period. In the
sim.do file, the run time is determined by this portion of the ModelSim command:

when {/sim_tb_top/phy_init_done = 1} {
if {[when -label a_100] == ""} {
when -label a_100 { $now = 50 us } {
nowhen a_100..........}}}}

The when command checks for completion of calibration (run time is set for 50 µs). To
increase the run time after completion of calibration, 50 µs should be changed to some
other value, such as 100 µs. There must be a space between the value and the unit.

This command is useful in case the previous condition fails to complete within, for
example, 800 µs:

when {$now = @800 us} {stop}

ModelSim pauses in this case.

Note: The second when command run time value (800 µs) should always be greater than the first
one (50 µs), otherwise the simulation result that is displayed at the end shows a “calibration/
initialization failed” message.

Changing the Breakpoint Condition

In the run time example, /sim_tb_top/phy_init_done = 1 indicates the signal on which
the breakpoint is set. The user can change this condition by changing the path and value of
the breakpoint. Refer to the ModelSim command reference for more information.

Simulations Using ISim
The design can be simulated using the ISim simulator by running the isim_run.bat file
located in the sim folder. This file compiles and elaborates the design. The isim_run.bat
file also generates the simulation executable using the fuse command and invokes the ISim
GUI.

http://www.xilinx.com

336 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Appendix B: Simulation Help

By default, all signals in the sim_tb_top module are added to the waveform viewer. The
user can add required signals from the objects window to the waveform viewer. The
simulation can be run for a specified time using the run <time> command in the ISim GUI.

Files in sim Folder
The MIG tool generates all of the design files in the rtl folder and the simulation files in
the sim folder. Table B-1 lists the files generated in the sim folder for Virtex-6 FPGA
DDR3 SDRAM designs.

Table B-1: Virtex-6 FPGA DDR3 SDRAM Directory Files

File Name Description

sim_tb_top.v/vhd This is the Verilog or VHDL external testbench file. It
integrates the system and provides system inputs.

wiredly.v/vhd This module inserts a delay into Verilog or VHDL
designs.

ddr3_model.v This is the Verilog memory model for the DDR3 SDRAM
memory from Micron. It is provided only in Verilog.

ddr3_model_parameters.vh This is the parameter file used by Micron memory model
ddr3_model.v. It lists all of the different parameters that
define the memory type and timing parameters.

glbl.v This is used to initialize the simulator environment.

sim.do This lists the ModelSim commands required to run the
test case using the ModelSim simulator.

isim_run.bat This lists the ISim commands required to run the test case
using the ISim simulator.

isim_files.prj This contains the list of HDL files present in the design. It
also contains the library and the source file names.

isim_options.tcl This contains the TCL commands for simulation and
resume-on-error.

readme.txt This describes the steps to run simulations using the
ModelSim or ISim simulator.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 337
UG406 October 19, 2011

Files in sim Folder

Table B-2 lists the files generated in the sim folder for Virtex-6 FPGA DDR2 SDRAM
designs.

afifo,
cmd_gen,
cmd_prbs_gen,
data_prbs_gen,
init_mem_pattern_ctr,
mcb_flow_control,
mcb_traffic_gen,
pipeline_inserter,
rd_data_gen,
read_data_path,
read_posted_fifo,
sp6_data_gen,
tg_status,
v6_data_gen,
wr_data_gen,
write_data_path
(.v/vhd)

These are optional modules for designs without
testbenches. They are located in the rtl folder.

Table B-2: Virtex-6 FPGA DDR2 SDRAM Directory Files

File Name Description

sim_tb_top.v/vhd This is the Verilog or VHDL external testbench file. It
integrates the system and provides system inputs.

wiredly.v/vhd This module inserts delays into Verilog or VHDL designs.

ddr2_model.v This is the Verilog memory model for DDR2 SDRAM from
Micron. It is provided only in Verilog.

ddr2_model_parameters.vh This is the parameter file used by Micron memory model
ddr2_model.v. It lists all of the different parameters that
define the memory type and timing parameters.

glbl.v This is used to initialize the simulator environment.

sim.do This lists the ModelSim commands required to run the
test case using the ModelSim simulator.

isim_run.bat This lists the ISim commands required to run the test case
using the ISim simulator.

isim_files.prj This contains the list of HDL files present in the design. It
also contains the library and the source file names.

isim_options.tcl This contains the TCL commands for simulation and
resume-on-error.

Table B-1: Virtex-6 FPGA DDR3 SDRAM Directory Files (Cont’d)

File Name Description

http://www.xilinx.com

338 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Appendix B: Simulation Help

Table B-3 lists the files generated in the sim folder for Virtex-6 FPGA QDRII+ SDRAM
designs.

readme.txt This describes the steps to run simulations using the
ModelSim or ISim simulator.

afifo,
cmd_gen,
cmd_prbs_gen,
data_prbs_gen,
init_mem_pattern_ctr,
mcb_flow_control,
mcb_traffic_gen,
pipeline_inserter,
rd_data_gen,
read_data_path,
read_posted_fifo,
sp6_data_gen,
tg_status,
v6_data_gen,
wr_data_gen,
write_data_path
(.v/vhd)

These are optional modules for designs without
testbenches. They are located in the rtl folder.

Table B-3: Virtex-6 FPGA QDRII+ SDRAM Directory Files

File Name Description

sim_tb_top.v/vhd This is the Verilog or VHDL external testbench file. It
integrates the system and provides system inputs.

glbl.v This is used to initialize the simulator environment.

sim.do This lists the ModelSim commands required to run the
test case using the ModelSim simulator.

isim_run.bat This lists the ISim commands required to run the test case
using the ISim simulator.

isim_files.prj This contains the list of HDL files present in the design. It
also contains the library and the source file names.

isim_options.tcl This contains the TCL commands for simulation and
resume-on-error.

readme.txt This describes the steps to run simulations using the
ModelSim or ISim simulator.

tb_addr_gen,
tb_cmp_data,
tb_cmp_data_bits,
tb_data_gen,
tb_top,
tb_wr_rd_sm
(.v/vhd)

These are optional modules for designs without
testbenches. They are located in the rtl folder.

Table B-2: Virtex-6 FPGA DDR2 SDRAM Directory Files (Cont’d)

File Name Description

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 339
UG406 October 19, 2011

Files in sim Folder

Table B-4 lists the files generated in the sim folder for Virtex-6 FPGA RLDRAM II SDRAM
designs.

Table B-4: Virtex-6 FPGA RLDRAM II Directory Files

File Name Description

sim_tb_top.v/vhd This is the Verilog or VHDL external
testbench file. It integrates the system and
provides system inputs.

ldram2_cio_model.v This is the Verilog memory model for
RLDRAM II memory from Micron. It is
provided only in Verilog.

rrldram2_cio_model_ parameters.vh This is the parameter file used by the
memory model.

rldram2_cio_model.v This lists all of the different parameters that
define the memory type and timing
parameters.

glbl.v This is used to initialize the simulator
environment.

sim.do This lists the ModelSim commands required
to run the test case using the ModelSim
simulator.

isim_run.bat This lists the ISim commands required to
run the test case using the ISim simulator.

isim_files.prj This contains the list of HDL files present in
the design. It also contains the library and
the source file names.

isim_options.tcl This contains the TCL commands for
simulation and resume-on-error.

readme.txt This describes the steps to run simulations
using the ModelSim or ISim simulator.

rld_tb_addr_gen,
tb_cmp_data,
tb_cmp_data_bits,
tb_data_gen,
rld_tb_top,
rld_tb_wr_rd_sm
(.v/vhd)

These are optional modules for designs
without testbenches. They are located in the
rtl folder.

http://www.xilinx.com

340 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Appendix B: Simulation Help

Table B-5 lists the files generated in the sim folder for Virtex-6 FPGA multicontroller
designs.

Table B-5: Virtex-6 FPGA Multicontroller Directory Files

File Name Description

sim_tb_top.v/vhd This is the Verilog or VHDL external testbench file. It
integrates the system and provides system inputs.

wiredly.v/vhd This module inserts delays into Verilog or VHDL
designs.

cx_ddr3_model.v This is the verilog memory model for the
DDR3 SDRAM memory from Micron. it is provided
only in Verilog. The controller number is represented
by cx (for example, c0, c1).

cx_ddr3_model_parameters.vh This is the parameter file used by Micron memory
model ddr3_model.v. It lists all the different
parameters that define the memory type and timing
parameters. The controller number is represented by
cx (for example, c0, c1).

glbl.v This is used to initiate the simulator environment.

sim.do This lists the ModelSim commands required to run
the test case using the ModelSim simulator.

isim_run.bat This lists the ISim commands required to run the test
case using the ISim simulator.

isim_files.prj This contains the list of HDL files present in the
design. It also contains the library and the source file
names.

sim_options.tcl This contains the TCL commands for simulation and
resume-on-error.

ireadme.txt This describes the steps to run simulations using the
ModelSim or ISim simulator.

fifo,
cmd_gen,
cmd_prbs_gen,
data_prbs_gen,
init_mem_pattern_ctr,
mcb_flow_control,
mcb_traffic_gen,
pipeline_inserter,
rd_data_gen,
read_data_path,
read_posted_fifo,
sp6_data_gen,
tg_status,
v6_data_gen,
wr_data_gen,
write_data_path,
tb_addr_gen,
tb_cmp_data,
tb_cmp_data_bits,
tb_data_gen,
tb_top, tb_wr_rd_sm
(.v/vhd)

These are optional modules for designs without
testbenches. They are located in the rtl folder.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 341
UG406 October 19, 2011

Design Notes

Design Notes
This section provides notes on the various designs discussed in this chapter:

1. When using ModelSim to simulate the design, the sim.do file has commands to
suppress Numeric Std package and Arithmetic operation warnings.

2. After simulation in ModelSim, a test result is displayed based on whether or not the
design generates an error signal. The displayed result does not consider the error or
violations generated by the memory models or the simulator. The transcript file should
be reviewed for any errors or warnings generated.

3. If the license agreement is not accepted while generating the design, a memory model
is not generated in the sim folder. In this case, the memory model must be
downloaded from the memory vendor site and placed in the sim folder. The files
should be renamed accordingly, as described in Files in sim Folder, page 336
According to the design generated, memory model parameters are passed from the
sim.do file. For example, this command is used for a Micron DDR2 SDRAM design:

vlog +incdir+. +define+x256Mb +define+sg3 +define+x8 ddr2_model.v

In this example, +define+x256Mb indicates the device density. This parameter is not
present in the downloaded memory model, so it should be ignored. +define+sg3
indicates the memory speed grade, and +define+x8 indicates the device data width.

4. For DIMM designs, the MIG tool uses instantiations of component models.

5. While simulating VHDL designs generated using the Debug Signals option enabled in
the MIG tool, the simulator outputs warning messages such as:

** Warning: (vsim-3473) Component instance "ila_inst : ila" is not
bound.

Time: 0 ps Iteration: 0 Region: /sim_tb_top/u_mem_controller
File: ../rtl/test13_vhd_X0.vhd

** Warning: (vsim-3473) Component instance "vio_inst : vio" is not
bound.

Time: 0 ps Iteration: 0 Region: /sim_tb_top/u_mem_controller
File: ../rtl/test13_vhd_X0.vhd

** Warning: (vsim-3473) Component instance "icon_inst : icon" is not
bound.

Time: 0 ps Iteration: 0 Region: /sim_tb_top/u_mem_controller
File: ../rtl/test13_vhd_X0.vhd

These warning messages can be ignored because ila and icon instances are only useful
for debugging the design on hardware.

http://www.xilinx.com

342 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Appendix B: Simulation Help

Known Issues
This section discusses some known issues that can occur during simulation.

DDR3 SDRAM/DDR2 SDRAM

• ModelSim simulation error:

"#sim_tb_top.comp_inst.mem_8_4.gen_mem[2].u_comp_ddr3.dqs_pos_timing_
check: at time 18790687.0 ps WARNING: tWLS violation on DQS bit 0
positive edge.

Indeterminate CK capture is possible.

#sim_tb_top.comp_inst.mem_8_4.gen_mem[2].u_comp_ddr3.dqs_pos_timing_ch
eck: at time 18790687.0 ps Write Leveling @ DQS ck = 1"

This error can be ignored for DDR3 SDRAM designs.

• For VHDL designs:

• Warning in ModelSim simulator:

#Warning:NUMERIC_STD.TO_INTEGER: metavalue detected, returning 0
#Time: 0 ps
Iteration:0
Instance: /sim_tb_top/u_ip_top/u_memc_ui_top/u_mem_intfc/mc0/
rank_mach0/\rank_cntrl_inst(0)\/rank_cntrl0.

• Warning in ISim simulator:

Instance /sim_tb_top/u_ip_top/u_memc_ui_top/u_mem_intfc/mc0/
rank_mach0/\rank_cntrl_inst(0)\/rank_cntrl0/ : Warning: There is an
'U'|'X'|'W'|'Z'|'-' in an arithmetic operand, the result will be
'X'(es).

These warnings are due to metastable values during power-on. The user might get
some warning messages in both ModelSim and ISim simulators. These messages are
suppressed in the sim.do file for the ModelSim simulator. They can only appear if the
design is simulated without using the sim.do file generated by the MIG tool. These
warning messages should be ignored.

• The SIM simulator issues warnings such as “Parameter declaration becomes local in
mc with formal parameter declaration list” and “Function clogb2 has no return value
assignment.” These warnings can be ignored.

• In the case of x16/x8 components and data width of 8, this warning appears while
compiling the design:

** Warning: [3] ../sim/sim_tb_top.vhd(316): Range 0 to -1 is null.

This warning appears for VHDL designs only, and should be ignored.

6. If the design is rerun without deleting old files that were generated during simulation,
this warning can appear:

** Warning: (vlib-34) Library already exists at "work".

This warning should be ignored.

http://www.xilinx.com

Virtex-6 FPGA Memory Interface Solutions www.xilinx.com 343
UG406 October 19, 2011

Known Issues

QDRII+ SRAM
• Due to metastable values during power-on, warning messages might be displayed in

both the ModelSim and ISim simulators. These messages are suppressed in the
sim.do file for the ModelSim simulator. They appear only if the design is simulated
without using the sim.do file generated by the MIG tool. These warning messages
should be ignored.

• For the Cypress controller designs, the sim_tb_top module instantiates a sample
Cypress memory model. The model name in the testbench (sim_tb_top) contains
the two memory model instances (x36 and x18 memory models) with generate
statements. For example, the model is named cyqdr2_b4 and cyqdr2_b4_18 for x36
and x18 parts, respectively. This model name should be appropriately modified based
on the downloaded Cypress model.

• The ISim simulator warnings “Function clogb2 has no return value assignment” and
“Comparison between arrays of unequal length always returns TRUE” can be
ignored.

RLDRAM II
• Due to metastable values during power-on, warning messages might be displayed.

These messages are suppressed in the sim.do file and appear only if the design is
simulated without using the sim.do file generated by the MIG tool. These warning
messages should be ignored.

• The SIM simulator warnings “Function clogb2 has no return value assignment” and
“Comparison between arrays of unequal length always returns TRUE” can be
ignored.

• ModelSim simulation tCS violation errors on address/control signals prior to
calibration can be ignored.

http://www.xilinx.com

344 www.xilinx.com Virtex-6 FPGA Memory Interface Solutions
UG406 October 19, 2011

Appendix B: Simulation Help

http://www.xilinx.com

	Virtex-6 FPGA Memory Interface Solutions
	Revision History
	Table of Contents
	DDR2 and DDR3 SDRAM Memory Interface Solution
	Introduction
	Getting Started with the CORE Generator Software
	System Requirements
	Customizing and Generating the Core
	Creating Virtex-6 FPGA DDR3 Memory Controller Block Design
	Directory Structure and File Descriptions
	Verify UCF and Update Design and UCF Rules
	Quick Start Example Design
	Modifying the Example Design

	Getting Started with EDK
	EDK Clocking
	AXI4 Interface Connection
	External Ports
	AXI Address

	Simulation Considerations
	Core Architecture
	Overview
	User Interface
	AXI4 Slave Interface Block
	AXI4-Lite Slave Control/Status Register Interface Block
	User Interface Block
	Native Interface
	Memory Controller
	Error Correcting Code (ECC)
	PHY
	Physical Interface

	Designing with the Core
	Interfacing to the Core
	AXI4 Slave Interface
	AXI Addressing
	User Interface
	Command Path
	Write Path
	Read Path
	Native Interface
	Read Latency

	Core Constraints
	Timing Constraints
	Location and I/O Constraints

	Customizing the Core
	Design Guidelines
	DDR3 SDRAM
	DDR2 SDRAM
	Pin Mapping for x4 RDIMMs

	Debugging Virtex-6 FPGA DDR2/DDR3 SDRAM Designs
	Introduction
	Debug Tools
	Simulation Debug
	Synthesis and Implementation Debug
	Hardware Debug

	Supported Devices for Virtex-6 FPGAs

	QDRII+ SRAM Memory Interface Solution
	Introduction
	Getting Started
	System Requirements
	Quick Start Example Design
	Customizing and Generating the Core
	Creating the Virtex-6 FPGA QDRII+ SRAM Memory Design
	Directory Structure and File Descriptions

	Designing with the Core
	Verify UCF and Update Design and UCF Rules
	Error Messages

	Core Architecture
	Overview
	Client Interface
	Physical Interface
	Write Path
	Read Path
	Calibration
	Reset Module

	Customizing the Core
	Design Guidelines
	Debugging Virtex-6 FPGA QDRII+ SRAM Designs
	Introduction
	Debug Tools
	Simulation Debug
	Synthesis and Implementation Debug
	Hardware Debug
	Debugging the Core

	RLDRAM II Memory Interface Solution
	Introduction
	Getting Started
	System Requirements
	Customizing and Generating the Core
	Creating the Virtex-6 FPGA RLDRAM II Memory Design
	Directory Structure and File Descriptions
	Verify UCF and Update Design and UCF Rules
	Quick Start Example Design

	Designing with the Core
	Core Architecture
	Overview
	Client Interface
	Physical Interface
	PHY-Only Interface
	Read Path
	Calibration
	Reset Module

	Customizing the Core
	Design Guidelines
	Trace Length Requirements
	Pinout Requirements

	Debugging Virtex-6 FPGA RLDRAM II Memory Designs
	Introduction
	Debug Tools
	Hardware Debug
	Debugging the Core

	Additional Resources
	Xilinx Resources
	Solution Centers
	References
	List of Acronyms

	Simulation Help
	Introduction
	Supported Features
	Unsupported Features

	Simulating the Design
	Simulations Using ModelSim
	Changing Simulation Run Time
	Simulations Using ISim

	Files in sim Folder
	Design Notes
	Known Issues
	QDRII+ SRAM
	RLDRAM II

